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In this paper we present a study of the sensitivity of solar radiation statistical 
characteristics, due to modulation by statistically homogeneous cumulus clouds, to 
variations in the geometric shapes of cloud bottoms.  It is shown that the mean fluxes and 
brightness fields, as calculated using four different cloud models (with the same 
probability of the Sun shadowing by a cloud), only weakly depend on the shape of 
individual cloud bottoms. 

 
INTRODUCTION 

 
In statistical describing of radiation transfer through 

clouds the problem of the construction of an optical model of 
cloud fields with random geometry (broken cloudiness) is a 
prime consideration.  Simplest models approximate individual  
clouds by elementary geometrical bodies (such as cylinders, 
truncated  paraboloids, spheres, etc).  To simulate clouds 
realistically, more complex models are elaborated, that are 
based on the sum of random Gaussian fields,1 as well as the 
construction of clouds with a prescribed fractal dimension 
which is inferred from satellite data4–6 using n–step cascade 
processes,2,3 and so on.  However, numerical construction of 
such model cloud fields is highly laborious and demands very 
large amount of computing resources.  At the same time, the 
experimental data on vertical geometrical structure of clouds 
are yet insufficient to construct adequately the statistically 
inhomogeneous models of broken cloudiness.  Therefore, in 
practice the problems are solved under assumption of the 
statistical homogeneity of cloud fields. 

At present there exist a number of mathematical models 
of statistically homogeneous broken cloudiness, in which 
clouds are approximated by cylinders of the same height, but 
of different base shape.  Such an uncertainty brings up the 
question:  How high is the sensitivity of mean fluxes and 
brightness fields of the statistically homogeneous cloud fields 
to variations of base shapes of individual clouds?  Below we 
try to answer this question comparing mean radiant fluxes and 
brightness fields obtained in four models of statistically 
homogeneous broken cloudiness. 

 
MODELS OF STATISTICALLY HOMOGENEOUS  

CLOUD FIELDS 
 
Cloudiness is specified within the layer Λ: 0 ≤ z ≤ H as 

random scalar fields of extinction coefficient σk(r), single 
scattering albedo λk(r), and scattering phase function 
g(ω, ω′) k(r);  here ω is the unit vector and k(r) is the random 
indicator field 
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where G is the random set of points in Λ, where cloud occurs. 
All cloud models discussed below treat clouds as H–

height cylinders with various base shapes.  The input 
parameters of models are the cloud amount index N and the 

mean (or some effective) horizontal size (diameter) D
–

. 
Spatial distribution of dynamically noninteracting 

cumulus clouds, which forms horizontally homogeneous cloud 
field, can be considered as the Poisson distribution.  Such an 
assumption is in good agreement with radar measurements7 
and allows one to relate simply model parameters to 
experimentally determined characteristics of cloudiness.  We 
choose in the plane z = 0 m points according to the Poisson 

law P(m) = (m–)m/m! exp(– m–) and distribute them uniformly 

into the circle of radius R, where m– = vS is the mean number 
of points falling on the area S = πR2.  Value of R may always 
be taken sufficiently large, thus in solving practical problems 
the finite size of the area, in which cloud field is modeled, can 
be neglected.  So obtained spatial Poisson flux of points 
r1, ... , rm fixes the cloud bottom geometric centers.  The 

indicator function k(r) is defined as 
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where Ai is the set of points possessed to the convex geometrical 

figure Γ centered on ri which approximates an individual cloud;  

and  q is the indicator function for the Ai set.  Let us consider 

two models based on the Poisson point fluxes. 
Model 1.  Cloudiness is modeled using random mosaics8 

which are the set of convex, bounded polygons covering the 
space without overlapping. 

The random mosaics are generated by the spatial Poisson 
flux of points r1, ... , rm according to the following rule:  the 

cell Ci contains all spatial points closest to ri (compared to the 

other points rj , i ≠ j).  So Ci will almost surely convex polygon 

because it is formed by several intersecting straight lines.  We 
use the equivalent diameter Deq , that is the diameter of a circle 
whose area is equal to the mean area of a random mosaic, as a  
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characteristic horizontal size of a mosaic.  Mean number of cloud 
centers v per unit area is πR2 = vπ(Deq)2/4.  Value of 
indicator function k(r) is determined for each cell 
independently.  H–height cylinder with random mosaic Ci as 

a base is a cloud with probability N or cloudless gap with 
probability 1 – N. 

Model 2.  Clouds are approximated by cylinders with 
circle of diameter D as a base, and centers distributed on one 
plane in accordance with the Poisson law with the mean density 
 

ν = – 4 ln (1 – N) / π D2. 
 

The probability of covering the viewing direction by clouds 
(value used throughout the paper) is defined as9 
 

N2(θ) = 1 – exp 
⎣
⎡

⎦
⎤– ν( )π 

D2

4  + D H tan (θ)  . (1) 

 

Sampling cloud fields of the above–mentioned models, 
constructed based on the Poisson points ensembles in space, 
are shown in Figs. 1 and 2. 

 

 
 

FIG. 1.   Random mosaics:  points are the cell centers, 
clouds are shown by hatched random polygons. 

 
 

FIG. 2.  A sampling cloud field constructed on spatial 
Poisson point flux in region 25 by 25 km for D = 0.5 km.  

 

As was already noted, cloud fields of models 1 and 2 are 
constructed in finite cylindrical region which is required to be 
large enough to reduce the number of escaping photons and 
thereby the computational error.  However, if the region 
under simulation has too large horizontal size, the numerical 
construction of cloud field and photon trajectory simulation 
become tedious.  There is not a general rule for determination 
of the optimal size of this region and usually this optimal size 
is found empirically.  Based on numerous computations, in 
Ref. 10 it is proposed to take R values from 2H to 3H. 

Model 3  is constructed on the Poisson points fluxes on 
straight lines.  The indicator field k(r) is specified in the 
plane z = 0 within the rectangle [0, X]×[0, Y] as follows. 

1. Stationary Poisson points fluxes are constructed on 
the coordinate axes independently with the correlation 
functions B(x) = exp(– Ax x) and B(y) = exp(– Ay y), where 

Ax and Ay are the mean number of points per unit length. 

2. Independent values of k(r) are assigned for each 
rectangle [xj–1, xj] × [yi–1, yi] according to the distribution 

function N δ (k(r) – 1) + (1 – N) δ (k(r)). 
The field so obtained is statistically homogeneous, 

nonisotropic, with the exponential correlation function 
B(x) B(y).  Individual clouds in this model are parallelepipeds 
which can combine forming more complex structures.  Reliable 
experimental data on variations of the cloud size along different 
directions are lacking;  hence we assume that Ax = Ay = A and 

cloud bottom is a square on the average.  The parameter A is 

approximated as A = [1.65 (N – 0.5)2 + 1.04]/D
–

 (Ref. 11), here 

D
–

 is the mean horizontal cloud size.  The probability of covering 
the viewing direction by clouds is defined as10  

 

N3(θ) = 1 – (1 – N)exp (– A N H tan (θ)) . (2) 
 

A random cloud field is given in Fig. 3. 
 

 
 

FIG. 3.  An example of random cloud field generated by 
Poisson points flux on the coordinate axes (region 25 by 
25 km). 

 
Model 4.  Cloudiness is simulated with Gaussian random 

field.  For the model description see Ref. 12.  In statistically 
homogeneous case, the cloudiness is constructed as follows:  
the cylindrical cloud bases are formed by intersection of the  



D.A. Zimin and G.A. Titov Vol. 7,  No. 7 /July  1994/ Atmos. Oceanic Opt.  459 
 

 

surface w(x, y) = max(⏐ν(x, y) – c⏐, 0) and the plane z = 0, 
where v(x, y) is the homogeneous Gaussian field with zero 
mean, the correlation function K(x, y), and the variance 
σ = K(0, 0).  The indicator field is defined as 

 

k(r) = k(x, y, z) = {1, w(x, y) ≥ 0 ,
0, w(x, y) < 0 .  

 

Following Ref. 12, we calculated with the correlation 
function 

 

K(x, y) = σ2 J0(ρ(x2 + y2)) , (3) 
 

where J is the Bessel function, ρ is the radially spectral 
measure related to the correlation radius r as J0(ρ r) = 1/σ2e , 

and the Gaussian field was approximately simulated according 
to formula12  
 

ν(x, y) ≈ 

σ
I
 ∑
i=1

I

 – 2 ln (α
i
) cos((x ρ cosω

i
 + y ρ sinω

i
) + 2π β

i
). 

(4) 

Cloud parameters N and D
–

 are related to the input 
parameters of the model by formulas 

 

D
–2 = 8 2π (N / ρ2) d2 exp (d2 / 2); N = 2(1 – Φ (d2)). (5) 
 

The variance σ and the level of section c enter into 
Eq. (5) as the ratio d2 = c/σ, therefore, one of them, for 

example, σ, can be fixed.  (Hereinafter we set σ = 0.5.)  
Figure 4 gives a cloud field of this model. 
 

 
 

FIG. 4.  A sampling cloud field in the model based on the 
Gaussian random field (region 25 by 25 km). 

 
Reconciling the parameters.  To estimate the influence of 

cloud bottom shape on the mean fluxes and brightness fields of 
visible solar radiation, the models should be reconciled upon the 
input parameters.  Because we are interested in cloud–radiation 
interaction, reconciling should be performed so, that the cloud 
field characteristics exerting primary effect on radiation transfer 
to be close.  It is therefore desirable to fit models parameters so 
that the mean fluxes of nonscattered radiation <S>  come 
coincident.  This condition is necessary but not sufficient for the 

coincidence of the mean diffuse fluxes.  In this case, however, 
the agreement is expected in the mean diffuse transmission <Q

s> 

and the mean albedo <A>.  Clouds are optically thick and for 
small and intermediate cloud amount index the nonscattered 
radiation passes mostly through cloud gaps.  For this reason, <S> 
is governed primarily by the probability of covering the direction 
to sun by cloud N(ξ

⊗
), there ξ

⊗
 is the solar zenith angle.  

Therefore, it seems naturally to require the equality of those 
probabilities for all the models. 

In models 1 and 4, the above probabilities are unavailable 
in an analytical form.  However, recognizing that for large 
optical thicknesses <S> ≅ N(ξ

⊗
), we propose the following 

reconciling procedure. 
1. The mean fluxes calculated using model 4 are taken as 

reference ones. 
2. Using analytical expression for the mean intensity of 

nonscattered radiation (see Ref. 11, Eq. (11)), the effective value 
of cloud diameter in model 3 is taken so that <S3> = <S4>, 
hereafter the subscript indicates the model number. 

3. The effective diameter D 2
eff in the model 2 is taken to 

satisfy the condition N2(ξ
⊗
) = N3(ξ

⊗
).  From Eqs. (1) and (2) it 

follows that 
 

Deff
2  = – 4 ln (1 – N) / (π N A). (6) 

 

4. The models 1 and 2 are reconciled, to the first 
approximation, by equating of cloud base areas in the models, 
that is equivalent to requirement that D 1

eff = D 2
eff . 

At ξ
⊗
 = 0° and N(0) = N the mean flux of nonscattered 

radiation is independent on the cloud horizontal size.  For such a 
case, the effective cloud size in the model 3 is not uniquely 
determined, and D 3

eff is adjusted so as to bring the mean fluxes 

of scattered radiation in a closest agreement.  Equation (6) 
relating cloud size in models 1 and 2 remains in force as it is 
devoid of the ξ

Â
 dependence.  The dependence of the effective 

diameters in models 1, 2, and 3, obtained with the described 
procedure, on the cloud amount index and solar zenith angle is 
illustrated in Fig. 5.  There and in the following figures, 
numbers are correspond to the models numbers.  It is seen from 
the figure, that the effective horizontal cloud size is maximum in 
the model 4.  In the models 1, 2, and 3 Deff decreases 
significantly with increasing cloud amount index, being a 
nonmonotonic function of solar zenith angle. 

 
FIG. 5.  Reconciled effective cloud diameters in the models 1, 
2, and 3 as a function of cloud amount index (a) and solar 

zenith angle (b) for D
–

4 = 1 km. 
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Calculational results.  In the context of model 3, the 
radiation transfer equation for mean radiant intensity was solved 
by Monte Carlo method.  For other models we used technique 
for simulating the cloud and radiation fields.13  Computations 
were performed with zero albedo of underlying surface and with 
scattering phase function corresponding to C1 cloud model14 and 

wavelength of 0.69 μm.  Molecular and aerosol scattering was 
not considered.  Optical and geometrical cloud characteristics 
were ranging within 0 ≤ N ≤ 0.9, 0 ≤ ξ

⊗
 ≤ 60°, and 

10 ≤ σ ≤ 60 km–1.  The relative error in the mean fluxes did not 
exceed 1% throughout the computation. 

We compared models, taking 

δ(F
i, Fj) = 

F
i – Fj

Fj
 × 100%,  F = <S>, <Qs>, <A> 

 

as a measure of "agreement" between the mean fluxes, and, in 
addition, the quantity 
 

δ(Fi) = 
F

i – F4

F4
 × 100%,  i = 1, 2, 3 

as  a characteristic of deviation from reference Gaussian model. 
Figures 6 and 7 present dependence of the mean fluxes of 

direct, scattered transmitted, and reflected radiation on cloud 
amount index and solar zenith angle.  For N < 0.5, the mean 
fluxes of nonscattered radiation agree within the computational 
accuracy (Fig. 6a), and the suspection that <S> is primarily 
determined by N(ξ

⊗
) is well confirmed.  For larger N, the 

contribution to <S> from cloud–transmitted radiation becomes 
stronger.  The models have different total areas of the optically 
thin cloud edges, that produces small (in absolute value) 
deviations in <S2> and <S3>, however, because of their 

smallness, the δ(S2) and δ(S3) values can amount to 5–10%.  

The large δ(S1) values at N > 0.5 and 10 < ξ
⊗
 < 45° indicates 

that the use of the condition D 1
eq = D 2

eff for reconciling in the 

given range of the parameters variation does not assure 
N1(ξ

⊗
) = N2(ξ

⊗
). 

 
FIG. 6.  Dependence of the mean radiant fluxes on cloud 
amount index at σ = 30 km–1, ξ

⊗
 = 10°:  <S> (a) and <Qs> 

(solid lines), <A> (dashed lines) (b). 
 

 
 
FIG. 7.  Mean fluxes of solar radiation versus zenith angle 
at N = 0.5 and σ = 30 km–1:  <S> (a) and <Qs> (solid 

lines), <A> (dashed lines) (b). 
 
The reflected fluxes <A2> and <A4> agree to within the 

computational error over the entire range of the parameters 
variation (Figs. 6b and 7b).  Also, the model 1 produces 
albedo value close to the above–mentioned ones, if the 
model is well–reconciled upon <S>, δ(<A1>) is below 2%.  

Spread in <Q
s> values of the models 1, 2, and 4 is primarily 

due to the mismatching between the direct radiation fluxes 
and is in complete agreement with the <S> mismatching.  
For ξ

⊗
 > 30°, the flux <Qs3> is somewhat greater, while the 

albedo <A3> is smaller, than their counterparts in the 

models, and increasing the solar zenith angle causes increase 
of δ(<Qs3>) and δ(<A3>) up to 5% at ξ

⊗
 = 60°.  Such a 

behavior of the fluxes is because the model 3 contains grater 
number of small clouds (Fig. 5), therefore, the role of cloud 
sides in the radiation transfer will be more important.  In 
particular, since phase scattering function is strongly 
forward peaked, radiation leaving cloud sides  
contributes mainly to the transmission;  and for  
constant <S> the fraction of reflected radiation is thus 
reduced. 

The growth of the extinction coefficient from 10 to 
60 km–1 has little effect on the mean flux deviations.  The 
nonscattered radiation fluxes in the models 2 and 3 
reconciled by equating the probabilities of observing cloud 
along the line of sight to the Sun, show increasing 
agreement as the extinction coefficient increases, reaching 
almost complete coincidens for σ > 30 km–1;  moreover, 
even at σ = 10 km–1 the discrepancy does not exceed 2% 
(Fig. 8).  Therefore, for σ varying between the above 
limits, equating the N(ξ

⊗
) values can be considered  

as sufficient condition for reconciling upon the  
direct radiation.  Due to the comparison procedure  
adopted, δ(<S3>) = 0.  Albedo values in all models  

agree to within the computational error; the mean  
fluxes of scattered radiation are also close,  
δ(<Qs>) ≅ 1.5–2%. 
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FIG. 8.  Influence of the extinction coefficient σ on the 
mean radiant fluxes at N=0.5 and ξ

⊗
=30°:  <S> – solid, 

<Qs> – dot–dash, and <A> – dashed lines. 
 

The δ(S1) value is 2–2.5% and weakly depends on σ, 

because the dominating cause for discrepancy of the models 1 
and 2 is the insufficiently adjusted probabilities of covering  

direction to Sun by clouds.  To obtain the correct condition 
for reconciling is not the purpose of the paper;  it is however 
hoped that fluxes of the model 1 can agree better with the 
other models if the nonscattered radiation is somehow brought 
in a closer agreement.  One way is to use the above described 
comparison procedure, taking the model 1 as a reference one 
and adjusting the mean diameter in the model 3 according to 
<S1> = <S3>.  Mean fluxes from the models 1, 2, and 3 so 

reconciled and computed at values of N and ξ
⊗
 which under 

the condition D 1
eff = D 2

eff yield maximum differences in <S1> 

and <S3> are given in Table I.  From the table it is seen that, 

as expected, the relative deviations of fluxes are within the 
computational error.  

TABLE I. 

ξ
⊗
 N Model <Qs> <S> <A> <Q> 

  1 0.389 0.342 0.269 0.731 

 0.5 2 0.389 0.344 0.267 0.733 
20°  3 0.388 0.343 0.269 0.731 
  1 0.207 0.411 0.382 0.618 
 0.7 2 0.207 0.412 0.381 0.619 
  3 0.207 0.410 0.383 0.617 
  1 0.332 0.374 0.294 0.706 
 0.5 2 0.332 0.376 0.292 0.708 

30°  3 0.329 0.375 0.296 0.704 
  1 0.165 0.428 0.407 0.593 
 0.7 2 0.165 0.427 0.408 0.592 
  3 0.164 0.426 0.410 0.590 

 
FIG. 9.  Angular distributions of the mean intensity of reflected and transmitted radiation at N = 0.5 , ξ

⊗
 = 30°, and σ = 30 km–1. 

 
Coinciding mean fluxes can have different angular 

structure.  To estimate the differences, we present histograms of 
angular distributions of scattered radiation (Fig. 9) defined as 

 

I↑(↓)
i  = ⌡⌠

0

2π

 d ϕ ⌡⌠
θi

θ
i+1

 < I↑(↓)(θ, ϕ)> dθ ,    

0 ≤ θ ≤ 
π
2 ,   θi+1 – θi = 0.1 , 

where < I↑(↓)(θ, ϕ)> is the mean intensity of transmitted (↓) 
and reflected (↑) radiation, respectively;  θ and ϕ are the 
zenith and azimuth angles.  It is seen that for the considered 
models the angular distributions agree well.  Some differences 

in I↑(↓)
i

 are for the same reasons as the mean flux deviation.  

Computations have shown that, within the above–mentioned 
range of cloud amount index and solar zenith angle variations, 
the angular distributions qualitatively agree;  δ(I) averages 5% 
that can be related to computational error not exceeding 4%. 
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CONCLUSION 
 

The models examined generate quite different individual 
clouds and cloud field (Figs. 1–4).  Nevertheless, on a proper 
reconciling input parameters, the externally unlike models are 
practically equivalent from the radiation transfer standpoint.  
An effective reconciling follows by equating probability of 
covering the viewing direction to Sun by clouds. 

Thus, if experimentally determined values of N(ξ
⊗
) are 

used as an input parameter, radiative characteristics will be 
insensitive to the choice of a statistically homogeneous cloud 
model.  This means, that assuming statistical homogeneity of 
cloud field allows computation of the mean radiant fluxes and 
brightness fields without accounting for cloud bottom shapes;  
therefore, in practice the most efficient and computer time 
saving cloud model can be chose. 
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