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We present a general solution of the scalar integro–differential equation of 
transfer of natural radiation through the atmosphere above an inhomogeneous non–
Lambertian surface in the visible and near infrared ranges. The atmosphere is treated 
as plane–parallel, with standard vertical profiles of the volume coefficients of 
scattering and extinction. Within the physically acceptable limits the dependence of 
the reflection coefficient of the surface on horizontal coordinates and angles of 
incidence and reflection may remain arbitrary. A model is proposed of the field of 
brightness, based on this general solution. Such a model provides a methodologically 
high computational accuracy of algorithms of the theory of radiation transfer. 

 
In Refs. 1–7 the authors developed some models to 

describe the radiation transfer through the atmosphere above 
an inhomogeneous non–Lambertian Earth's surface. Most 
general solution of the boundary–value problem for a 
stationary equation describing the radiation transfer through 
an atmospheric layer over a surface with an arbitrary 
reflection coefficient is presented in Refs. 4 and 5. Certain 
simplifying assumptions on the character of multiple 
reflections of radiation from the surface are usually made in 
such a case. 

When constructing such a model, the authors of Refs. 4 
and 5 referred to an assumption,2 according to which the first 
order reflection from a surface agrees with the exact coefficient 
of reflection, while multiple reflections are described by a 
hemispherical albedo. Such an assumption makes it possible to 
present the field of brightness in a compact form and at the 
same time significantly reduce the computer time without any 
extra loss of accuracy. The authors of Refs. 4 and 5 presented 
the coefficient of reflection as a sum of weighted coefficients 
of reflection of the basic surfaces, factorized over the angular 
and spatial variables. Such a presentation of the reflection 
coefficient is a necessary condition for the technique of optical 
spatial frequency characteristics to be used. 

In this study we use the general solution, which is 
transformed following Ref. 5 and the above simplifying 
assumption concerning the mode of interaction of radiation 
with the surface. However, in contrast to Ref. 5, the reflection 
coefficient is assumed to be an arbitrary function of both the 
angular and spatial variables, within the physically acceptable 
limits. The absence of any additional limitations on the 
reflection coefficient makes it possible to construct a model 
which is more general and compact than that form Ref. 5. 
When constructing the model presented here we used the 
technique of multiple reflections developed in Ref. 8 for the 
Lambertian underlying surface. 

Earlier models of brightness distribution resulting from a 
preset values of the reflection coefficients and from the model 
proposed in Refs. 3–5 and 8 are only particular cases of the 
present model. 

Consider the transfer of radiation through a plane–
parallel atmosphere over a flat surface with inhomogeneous 
non–Lambertian reflection. Let z be the vertical coordinate; 
r = {x, y} be the vector of horizontal coordinates; z = 0 be the 
top of the atmosphere; z = h be the level of the Earth's 
surface; πS

λ
 be the spectral solar constant; s = {μ, s

⊥
} be the 

unit vector of propagating radiation, s ∈ Ω, Ω be the unit 

sphere; s
⊥
 = 1 – μ2 {cosϕ, sinϕ}; μ = cosΘ; Θ, ϕ be the 

zenith and the azimuth angles; s
0
 = {ζ, 1 – ζ2, 0} be the 

unit vector of incidence of the solar radiation; ζ = cosΘ
0
; Θ

0
 

be the zenith angle of the Sun; Γ
0
 = {z = 0, s ∈ Ω

+
}, 

Γh = {z = h, s ∈ Ω
–
} be the inner boundaries of the 

atmospheric layer; Ω
+
 and Ω

–
 be the lower and the upper 

hemispheres; α(z), σ(z) be the volume coefficients of 
extinction and scattering; f(z, s, s

0
) be the single scattering 

phase function; ρ(r, s, s
0
) be the coefficient of reflection; 

I(z, r, s, s
0
) be the spectral brightness of radiation. 

Spectral brightness of radiation satisfies the boundary–
values problem 

 

LI = SI, I 
Γ0

 = π S
λ
 δ (s – s

0
), I 

Γh
 = RI; (1) 

 

where L = (∇, s) + α(z) is the transfer operator; S is the 
operator of scattering  
 

SI = 
σ(z)
4π  ⌡⌠

Ω

 f(z, s, s′) I(z, r, s′, s
0
) ds';  

 

R
ρ
 is the operator of reflection  

 

R
ρ 

I = 
1
π ⌡⌠

Ω +

 ρ(r, s, s′) I(h, r, s′, s
0
) ds′.  

 

Solution of the boundary–value problem (1) is presented in 
the following form:4,5 
 

I(z, r, s, s
0
) = D(z, s, s

0
) + Z(r – r∼, s, s

0
) T(μ) + 

 

+ ⌡⌠
Ω –

 ⌡⌠
–∞

∞

 O
∼
(z, r – r∼ –r′, s, s′) Z(r′, s′, s

0
) dr′ ds′ ; (2) 

 

where 
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Z(r, s, s
0
)=E

ρ
(r, s, s

0
)+∑

n=1

∞

 ⌡⌠
Ω 

–

 ⌡⌠
–∞

∞

 ... ⌡⌠
Ω 

–

 ⌡⌠
–∞

∞

 Q(r, r – rn, s, sn) × 

 

× Q(rn, rn – rn–1
, sn, sn–1

) ... Q(r
2
, r

2
 – r

1
, s

2
, s

1
)×  

 

× E
ρ
(r

1
, s

1
, s

0
) dr

1
 ds

1
 ... drn dsn; (3) 

 

D(z, s, s
0
) is the brightness of an atmospheric haze;  

O
∼

δ
(z, r – r∼, s, s′)=O

δ
(z, r – r∼, s, s′)–T(μ′) δ(r – r∼) δ(s – s′);  

O
δ
 (z, r , s, s′) is the pulse transient function of the system 

of transfer of directional radiation through the atmospheric 
layer;  
Oh(r, s′, s

1
) = O

δ
 (h, r, s′, s

1
); T(μ) = exp {– (τ

0
 – τ) / η}; 

η = ⏐μ⏐; τ = ⌡⌠
0

z

 α(z′) dz′ is the optical vertical coordinate; 

τ
0
 = ⌡⌠

0

h

 α(z′) dz′ is the optical thickness of the atmosphere;  

r∼ = s
⊥
(h – z) / η is the displacement vector; 

 

E
ρ
(r, s, s

0
) = 2 ⌡⌠

0

1

 ρ0(r, μ, μ′) D0 (h, μ′, ζ) μ′ dμ′ + 

 

+ ζ ρ(r, s, s
0
) S
k
 e

–τ
0
/ξ

; 
 

Q(r, r – r
1
, s, s

1
) = 

1
π ⌡⌠

Ω+

 ρ(r, s, s′) Oh(r – r
1
, s′, s

1
) μ′ ds′; 

D0(h, μ, ζ) = 
1
2π ⌡⌠

0

2π

 D(h, s, s
0
) dϕ, ρ0(r, μ, μ′) = 

= 
1
2π ⌡⌠

0

2π

 ρ(r, s, s′) dϕ. 

 

Functions D and O
δ
 satisfy the basic boundary–value 

problems 
 

L
–

D = SD + SI
dir

, D Γ0
 = 0, D Γh

 = 0; 

 

L O
δ
 = S O

δ
, O

δ Γ0
 = 0, O

δ Γh
 = δ(r) δ(s – s′); 

 

where L
–

 = μ d/d z + α(z), and I
dir

 = π S
λ
 δ(s – s

0
) e–τ/ξ is 

the brightness of the direct nonscattered radiation. 
Presentation (2)–(3) has the highest level of 

generalization among the solutions of the initial boundary–
value problem (1). In order to transform this presentation 
into a form suitable for making a computational procedure, 
certain simplifying model assumptions should be made. 
Assume that the first order reflection occurs from the 
surface with a preset reflection coefficient ρ (r, s, s

0
), while  

reflections of every other order happen from an effective 

Lambertian surface with a mean albedo q
⎯

. The value of q
⎯

 
is an average component of the hemispherical albedo 
 

q(r) = 
1

π2
 ⌡⌠
Ω +

 ⌡⌠
Ω –

 ρ(r, s, s′) μ μ′ ds′ ds (4) 

 

within some range of r = {x, y} variation. Estimates from 
Refs. 2 and 9 indicate that the accepted simplification of 
the model of multiple reflections from the surface results 
only in insignificant additional error in computed values of 
I. In accordance with the simplification assumed above the 
sought approximate solution of the boundary–value problem 
(1), as it follows from (2) and (3) has the form 
 

I
ρ
(z, r, s, s

0
) = D(z, s, s

0
) + Ψ

–
δ,0

(z, s, s
0
) +  

 

+
q
–

 C
–

δ,0(z) Ψ0(z, μ)

1 – q
–

 C0

 +
1

(2π)2⌡⌠
–∞

∞

 

⎩⎪
⎨
⎪⎧
 

 

Ψ
∼

δ
(z, p, s, s

0
) + 

Ψ(z, p, s)

1 – q
–

 C(p)
× 

 

× 

⎣
⎢
⎢
⎡

⎦
⎥
⎥
⎤

q
–

 C
∼

δ (p, s0) + 
q
∼∧
(p) C

–
δ,0(ξ)

1 – q
–

 C0 ⎭⎪
⎬
⎪⎫
 

 

 e–i(p, r) dp; (5) 

 

where 
 

Ψ
δ,0

(z, s, s
0
) = ⌡⌠

Ω –

 Ψ
δ,0

(z, s, s′) E
ρ
–(s′, s

0
) ds', (6) 

 

C
–

δ,0
(ζ) = 

1
π ⌡⌠

Ω+

 Ψ
–

δ,0
(h, s, s

0
) μ ds, (7) 

 

Ψ
0
(z, μ) = ⌡⌠

Ω –

 Ψ
δ,0

(z, s, s′) ds′, (8) 

 

C
0
 = 2 ⌡⌠

0

1

 Ψ
0
(h, μ) μ dμ, (9) 

 

Ψ
∼

δ
(z, p, s, s

0
) = ⌡⌠

Ω –

 Ψ
δ
(z, p, s, s′) E

∧

ρ∼
(p, s′, s

0
) ds′, (10) 

 

Ψ(z, p, s) = ⌡⌠
Ω –

 Ψ
δ
(z, p, s, s′) ds′, (11) 

 

C
∼

δ
(p, s

0
) = 

1
π ⌡⌠

Ω –

 Ψ
∼

δ
(h, p, s, s

0
) μ ds, (12) 

 

C(p) = 
1
π ⌡⌠

Ω –

 Ψ(h, p, s) μ ds, (13) 
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E
ρ
–(s, s

0
)=2 ⌡⌠

0

1

 ρ
–

0(μ, μ′)D0(h, μ′, ζ) μ′ dμ′+ζ S
λ
 ρ
–

(s, s
0
)e

–τ
0
/ξ

, 

  (14) 
 

E
∧

ρ∼
(p, s, s

0
) = 2 ⌡⌠

0

1

 ρ∼
∧

0(p, μ, μ′) D0(h, μ′, ζ) μ′ dμ′ + 

 

+ ζ S
λ
 ρ∼
∧
(p, s, s

0
) e

–τ
0
/ξ

; (15) 
 

p = {px, py} is the vector of spatial frequencies; ∧ is the 

symbol of Fourier transform over the coordinates r = {x, y};  

ρ
–

(s, s
0
) is the average component of the reflection 

coefficient; 

ρ∼(r, s, s
0
) = ρ(r, s, s

0
) – ρ

–
(s, s

0
) is the variation of the 

reflection coefficient; q∼(r) = q(r) – q
–

 is the variation of the 
hemispherical albedo;  
 

ρ
–

0(μ, μ′) = 
1
2π ⌡⌠

0

2π

 ρ
–

(s, s′) dϕ; 

 

ρ∼
∧

0(p, μ, μ′) = 
1
2π ⌡⌠

0

2π

 ρ∼
∧
(p, s, s′) dϕ; 

 

q∼
∧
(p) = ⌡⌠

–∞

∞

 q∼(r) ei(p, r) dr;  

 

Ψ
δ
 (z, p, s, s′) is the optical spatial frequency characteristic 

of an atmospheric layer in the case of a source of directed 
radiation placed at the bottom of the layer at the point 
⏐ r ⏐ = 0. The function Ψ

δ
(z, p, s, s′) satisfies the 

boundary–value problem 
 

L
∧
 Ψ

δ
 = S Ψ

δ 
; Ψ

δ Γ+
 = 0; Ψ

δ Γ–
 = δ (s – s′), (16) 

where 
 

L
∧
 = μ ∂/∂ z + α(z) – i(p, s

⊥
). 

 

The numerical technique for solving the problem (16) 
was developed in Ref. 10. Functions (6)–(15) are calculated 
by means of quadratures. 

Expression (5) is the exact solution of our problem for 
the accepted simplified model of multiple reflections from 
the surface. Besides, it yields a compact expression for 
radiation brightness. Thus, such an expression combines 
compactness and high accuracy. Note that no additional 
limitations are imposed on the reflection coefficient. Thus 
obtained solution generalizes the result from Ref. 5, the 
latter giving the solution of the same problem under the 
same assumptions on the nature of multiple reflections from 
the surface but with the reflection coefficient of the form 
 

ρ(r, s, s
0
) = ∑

n=1

N
 hn(r) ρ

–
n(s, sn), (17) 

 

where ρ
–

n(s, s0
) are the coefficients of reflection of uniform 

basic surfaces; hn(r) are weighting functions. In the case 

when expression (17) is valid for the reflection coefficient, 
expression (5) is reduced into the expression similar to that 
from Ref. 5. Thus statement may be tested directly. In the 
case of Lambertian reflection we have ρ(r, s, s

0
) → q(r), 

and expression (5) is reduced to a well–known solution.8 
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