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In this paper we present optical transfer operator (OTO) constructed based on 
the consideration of the general boundary–value problem of the radiation transfer 
theory for the case of a plane layer with a reflecting bottom and finite sources of 
radiation.  The kernel of the OTO is constructed of the influence functions (IF) 
identical to the point spread function or of the spatial frequency characteristics 
(SFCH), which coincide with the optical transfer function (OTF).  The IF and 
SFCH are versatile linear transfer functions of the system "atmosphere (ocean, 
cloudiness, hydrom) – underlying surface" that are determined from a solution of the 
boundary–value problem of the theory of radiation transfer for a plane layer with 
nonreflecting boundaries irradiated with a source of like a cw laser beam.  We have 
constructed an OTO for the case of horizontally inhomogeneous boundary with an 
anisotropic reflection when no splitting of spatial and angular variables is used in the 
scattering coefficient.  Such an OTO has the most general form and is expressed in 
terms of IF and SFCH.  We show in this paper that all other expressions for OTO are 
particular cases of the derived formula. 

 
INTRODUCTION 

 

The model (approximate or empirical) linear optical 
transfer function (OTF) and point spread functions (PSF), 
formulated at a physically rigorous level1, are normally used 
in multidimensional problems on radiation correction of 
remote sensing data when studying various targets and 
environment, in processing of optical information, in the 
theories of vision and image transfer in turbid media, and in 
theoretical foundations for computational techniques for 
opto-electronic observational systems.  The problems of 
radiation transfer through 3D plane-parallel layers with 
horizontally inhomogeneous reflecting boundaries are more 
complicated, since several theoretical principles put into the 
basis of the theory of linear systems are not satisfied then.  
These are the invariance principle, the theorem of optical 
reciprocity and isoplanarity.1,2 Development of nonlinear 
approximations of the techniques of spatial frequency 
characteristics (SFC) and functions of influence (FI)2 
methods is of principal importance.  First, one needs to 
estimate the role of nonlinear approximations in solution of 
specific applied problems. Second, it is important to reveal 
in explicit form the relations of either recorded or computed 
radiation to the characteristics of reflecting boundary.  
Third, it is necessary to formulate an efficient mathematical 
approach to construction of the optical transfer operator 
(OTO), that could be used as either exact or approximate 
solution to the general boundary–value problem of 
radiation transfer through a plane-parallel layer with finite 
sources of radiation and a horizontally inhomogeneous 
Lambertian or anisotropically reflecting underlying surface. 

The approach proposed uses the series of perturbation 
theory 

3-5 and generalized solution to the general boundary–
value problem of radiation transfer through scattering and 
absorbing media (such as atmosphere, ocean, clouds and 
hydrometeors) above a reflecting bottom.2,6-14 It is based on 
the physical characteristics of the transfer system that accounts 
for the fact that, in agreement with the physics of the 
phenomenon, the norm of the reflection operator does not 
exceed unity, so the constructed series are convergent.  

Analitical isolation of the "average" horizontally homogeneous 
component enables one to lower the norm of the horizontally 
variable component of the reflection operator so that the series 
converge faster. 

Below we present some new results to demonstrate 
how, using the universal linear transfer characteristics 
(OTF identical to SFC and PSF identical to FI) one can 
obtain a solution to an approximation accounting for an 
arbitrary order interaction of radiation with the layer 
boundary and construct an OTO for the task of remote 
sensing of the underlying surface. The optical transfer 
operator formulated in this paper for the case of a 
horizontally inhomogeneous, anisotropically reflecting 
underlying surface, when no splitting of spatial and 
angular coordinates is feasible, is the most general form 
of OTO, from which one may derive all the particular 
presentations of OTO for any linear and nonlinear 
approximations available from literature. 

 
FORMULATION OF THE PROBLEM 

 

Consider a plane-parallel layer, infinite horizontally 
(-∞ <x, y< ∞) and having a finite height (0 ≤ z ≤ H), 
illuminated from either the top, bottom, or inside.  The 
"layer - underlying surface" system is considered non-
multiplicating at the level z = H. The direction in which 
the radiation propagates, s = { ϑ, ϕ} (μ = cos ϑ) is 
described using spherical coordinates; ϑ = arc cos μ, 
ϑ∈[0, π] is the zenith angle, i.e. the angle between the 
propagation direction and the direction of the internal 
normal to the top boundary of the layer z = 0 which 
coincides with the z axis, and ϕ∈ [0, 2π] is the azimuth 
angle taken from positive direction of the x axis.  The 
whole set of all directions s makes up a unit sphere 
Ω ≡ [–1, 1] × [0, 2π] in which μ∈[-1, 1] and ϕ∈[0, 2π]; 

Ω+ ≡ [0, 1] × [0, 2π] and Ω− ≡ [—1, 0] × [0, 2π] are 
hemispheres for the downward (transmitted) and the 
upward (reflected) going radiation, respectively. For a 
convenience in formulation of the boundary conditions let 
us introduce two sets 
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Ã
0 ={z, r

⊥
, s: z=0, s ∈ Ω+} , ÃH = {z, r

⊥
, s: z=Í, s ∈ Ω–} . 

 

Following T.A. Germogenova,13 we use term general 
boundary–value problem of the theory of radiation transfer 
 

{
Ð

K Ô = 0,  Ô⏐
Ã0

= 0,  Ô⏐
ÃÍ

= ε 
Ð

R Ô + ε Å(r
⊥
, s), (1) 

 

provided that the source E and the reflection operator R do 
not turn to zero simultaneously, and 0 < ε ≤ 1.  

The first boundary–value problem for a 3D equation 
of radiation transfer 
 

{
Ð

K Ô = 0,  Ô⏐
Ã0

= 0,  Ô⏐
ÃÍ

= Å(r
⊥
, s) (2) 

 

with its linear transfer operator 
 

Ð

D ≡ (s, grad)+σ(z) = 

Ð

Dz + 
⎝
⎛

⎠
⎞s

⊥
, 

∂
∂ r

⊥

, 
Ð

Dz ≡ μ 
∂

∂ z + σ(z) , 

 

the integral of collisions 
 
Ð

SÔ ≡ σs(z)⌡⌠
Ω

γ(z, s, s′)Ô(z, r
⊥
, s′) d s′, 

 

and the integro-differential operator 
Ð

K≡ 
Ð

D – 
Ð

S, is reduced, 
through a Fourier transform over the coordinate r

⊥
 = {x,y} 

 

∨

f(p) ≡ F[ f(r
⊥
)]( p) = 

⌡⌠
–∞

∞
f (r

⊥
)exp[ i ( p, r

⊥
)] d r

⊥
, 

 

(the spatial frequency p = {px, py} here takes only real 

values -∞ < px, py < ∞) to the boundary–value problem for 

a parametric complex one-dimensional equation of radiation 
transfer 2 
 

{
Ð

L( p) 
∨

Ô = 0,  
∨

Ô⏐
Ã0 

= 0,  
∨

Ô⏐
ÃÍ 

= 
∨

Å( p, s) (3) 

 

with the operator 
Ð

L( p) ≡ 
Ð

Dz–i ( p, s
⊥
)–

Ð

S,  
(p, s

⊥
) = px 

sinϑ cosϕ + py 
sinϑ sinϕ. 

Fourier images are marked with hacek. Optical 
properties of the medium are described by vertical 
distributions of the extinction coefficient 
σ(z) = σ

s
(z) + σ

abs
(z), absorption coeffecient σ

abs
(z), 

total scattering coefficient σ
s
(z), and the total scattering 

phase function γ(z, s, s′) normalized according to the 

expression 
⌡⌠
Ω

γ(z, s, s′) ds′ = 1. 

By analogy with the theory of constant coefficient 
differential equations in partial derivatives8-12, the solution 
to the problem (2) is presented as a linear functional 2,15 

 

Ô(z, r
⊥
, s) = (Θ, E)=

1
2π ⌡⌠

Ω
–

 d s–
⌡⌠
–∞

∞

 Θ(s–; z, r
⊥
– r

⊥

′, s)E(r
⊥

′,s–)dr
⊥

′ 

 

with the kernel FI Θ (s–; z, r
⊥
, s) being the solution to a 

boundary–value problem 
 

{
Ð

K Q = 0,  Θ⏐
Ã0 

= 0,  Θ⏐
ÃH 

= f
δ
(s–; r

⊥
, s); 

 

f
δ
(s–; r

⊥
, s) = d( r

⊥
) δ(s – s–), (4) 

 

or in terms of Fourier transforms it may be treated as a 
solution to the problem (3) in the form of a linear 
functional 
 

∨

Ô(z, p, s)=(Ψ, 
∨

Å) = 
1
2π 

⌡⌠
Ω

–

Ψ(s–; z, p, s) 
∨

Å( p, s–) d s–  

 

with the kernel in the form of SFC Ψ (s–, z, p, s) which is 
a solution of the boundary–value problem for the 
parametric complex equation of radiation transfer 
 

{
Ð

L( p) Ψ = 0,  Ψ⏐
Ã0 

= 0,  Ψ⏐
ÃH 

= 
∨

f
δ
(s–; p, s), (5) 

 

where 
∨

f
δ
(s–; p, s) = F[f

δ
(s–; r

⊥
, s)] = d( s – s–), since 

F [d(r
⊥
)] = 1. 

The function of influence and the spatial frequency 
characteristic are related through the Fourier transform 
 

Θ(s–; z, r
⊥
, s) = F –1 [Ψ(s–; z, p, s)];  

Ψ(s–; z, p, s) = F[Θ(s–; z, r
⊥
, s)]. 

 

If a linear functional 
 

(Θ, f )( s–; z, r
⊥
, s) = 

1
2π 

⌡⌠
Ω

–

 d s–′ 
⌡⌠
–∞

∞
Θ( s–′; z, r

⊥
– r

⊥

′

, s)× 

× f(s–; H, r
⊥

′

, s–′) d r
⊥

′

 (6) 
 

is defined for the function f(s–; H, r
⊥
, s) with its parameter 

s– ∈ Ω–, then its linear Fourier transfrom is  
 

F[(Θ, f )] = (Ψ, 
∨

f) (s–; z, p, s) = 
1
2π 

⌡⌠
Ω

–

Ψ(s–′; z, p, s) × 

× 
∨

f(s–; H, p, s–′) d s–′. (7) 
 

Problems (4) and (5) correspond to the simplest linear 
systems of radiation transfer, their parameters independent 
of the horizontal coordinates and of the properties of the 
reflecting boundary. 

Mathematical models of SFC, FI, and OTO of the 
system of the radiation transfer we obtain both 
phenomenologically and rigorously, from the general 
boundary–value problem of the theory of radiation transfer 
(1). The idea of such an approach is as follows. The initial 
3D equation of radiation transfer is replaced by a system of 
recursive equations for approximations of a series for 
perturbations over the parameter, ε, which presents the 
process of interaction of radiation with the boundary. We 
construct a fundamental solution using the Fourier 
transform over x and y. As a result boundary–value 
problem (1) in a five-dimensional phase space 
R2 × [0, H] × Ω = {x, y, z, ϑ, ϕ}, in which the sources and 
boundary conditions have complicated dependences on the 
spatial, x, y, and angular, ϑ,ϕ coordinates (including those 
discontinuous in x, y, which result in singular solutions and 
discontinuities of the first kind) is reduced to a parametric 
set of boundary–value problems (5), which are one-
dimensional in space and have three variables z, ϑ,ϕ and 
regular coefficients. Universal functions are then selected, 
invariant with respect to horizontal variations and to the 
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angular dependences of both the boundary conditions and 
sources of the initial problem. Having a parametric set of 
such invariant functions, which are called SFC's one can 
obtain a solution of the problem (1) for various spatial and 
angular structures of the reflection coefficient and for 
sources at the boundary z = H via the functionals and 
perturbation series. Thus constructed series are Neumann 
series over the order of interaction of radiation with the 
reflecting boundary. 

A single act of interaction of radiation with the 
reflecting boundary may be described by the operators 
 

[
Ð

R
ν
 Ô](H, r

⊥
, s) ≡

⌡⌠
Ω

+

 Ô(H, r
⊥
, s+) P

ν
(r

⊥
, s, s+) d s+;  

[
Ð

Rc Ô](H, r
⊥
, s) ≡

⌡⌠
Ω

+

 Ô(H, r
⊥
, s+) Pc(s, s

+) d s+;  

Ð

R Ô = 
Ð

R
ν
 Ô + 

Ð

Rc Ô, 
 

or by their Fourier transforms 
 

[
∨
R

ν
 

∨
Ô](H, p, s) ≡ F[ 

Ð

R
ν
 Ô] = 

1
(2π)2 ⌡⌠

–∞

∞
d p′× 

×
⌡⌠
Ω

+

∨

Ô(H, p′, s+) 
∨

P
ν
( p – p′, s, s+) d s+; 

[
Ð

Rc 
∨
Ô](H, p, s) ≡ F [ 

Ð

Rc Ô]=
⌡⌠
Ω

+

∨

Ô(H, p, s) Pc(s, s
+) d s+; 

 

[
∨
R 

∨
Ô](H, p, s) ≡ F[

Ð

R Ô] = 
∨
R

ν
 

∨
Ô + 

Ð

Rc 
∨
Ô. 

 

With the account of contribution from multiple 
scattering in a medium and depending on the structure of 
characteristics of reflection, the process of formation of 
illumination due to repeated reflections of radiation from 
the boundary is described by the general boundary–value 
problem (1) and by the general boundary–value problems: 
 

{
Ð

K Ôñ =0, Ôñ ⏐Ã0
=0 Ôñ ⏐ÃÍ

=ε 
Ð

Rc Ôñ + ε Eñ(r⊥
, s); (8) 

 

{
Ð

K Ô
ν =0, Ô

ν ⏐Ã0 
=0,  Ô

ν ⏐ÃH
=ε 

Ð

R
ν
 Ô

ν
+ε E

ν
(r

⊥
, s). (9) 

 

Sources Eñ = {
Ð

Rc Ô
0, 

Ð

Rc Ô
H}, Ev = {

Ð

R
ν
 Ô0, 

Ð

R
ν
 ÔH}, 

and E = {
Ð

R Ô0, 
Ð

R
ν
 Ô0} in these problems are defined in 

terms of the background radiation Ô0 or ÔH, which is the 
solution to the problem with sources E0(r

⊥
, s) or EH (r

⊥
, s) 

 

{
Ð

K Ô0 = 0,  Ô0
 ⏐Ã0 

= E0(r
⊥
, s),  Ô0

 ⏐ÃH 
= 0; 

{
Ð

K ÔÍ = 0,  ÔÍ
 ⏐Ã0 

= 0,  ÔÍ
 ⏐ÃH

= EÍ(r
⊥
, s). 

 
One may seek the solution to each of the problems 

(1), (8), and (9) in two forms, either as a series over the 
order of reflection, or as linear functionals, with their 
kernels being FI or SFC, overburdened with contributions 
from multiple scattering and reflection. 

 
OPTICAL TRANSFER OPERATOR FOR A 

HORIZONTALLY HOMOGENEOUS OPERATOR OF 

REFLECTION 

 
A generalized solution to the general boundary–value 

problem (8) may be presented in the form of linear 
functionals 
 

Ôñ(z, r⊥
, s) = (Θñ, Eñ),  

∨

Ôc(z, p, s) = (Ψñ, 
∨

Ec), (10) 

 
their kernels Θ

c
 (s–; z, r

⊥
, s) and Ψ

c
 (s–; z, p, s) = F[Θ

c
]  

satisfying the boundary–value problems 
 

{
Ð

KQc = 0, Θñ ⏐Ã0 
= 0, Θñ ⏐ÃH 

= ε 
Ð

RcQc  + f
δ
 (s–; r

⊥
, s); (11) 

 

{
Ð

L( p) Ψc = 0, Ψñ ⏐Ã0 
= 0, Ψñ ⏐ÃH 

= ε 
Ð

RcΨñ + 
∨

f
δ
 (s–; s). (12) 

 

Let us define operations of interaction between radiation and horizontally homogeneous boundary at z = H in terms of FI 
Θ (s–; z, r

⊥
, s) 

 

[
Ð

Gñ f] ( s–; H, r
⊥
, s) = 

Ð

Rñ(Θ, f) = ([
Ð

RcΘ], f) =  
1
2π ⌡⌠

Ω
–

d s–′

⌡⌠
Ω

+

 Pñ(s, s
+) d s+ 

⌡⌠
–∞

∞

 f(s–; r
⊥

′

, s–′) × Θ(s–′; H, r
⊥
– r

⊥

′

, s+) d r
⊥

′

 (13) 

or using SFC Ψ (s–, z, p, s) 
 

[
Ð

Qñ 
∨

f](s–; H, p, s)=F[
Ð

Gñ f]=
Ð

Rñ(Ψ, 
∨

f)=(
Ð

Rñ Ψ], 
∨

f)= 
1
2π ⌡⌠

Ω
–

∨

f(s–; p, s–′) d s–′

⌡⌠
Ω

+

 Pñ(s, s
+)Ψ(s–′; H, p, s+) d s+. (14) 

 

The components of perturbation series 
 

Θñ(s
–; z, r

⊥
, s) = ∑

n=0

∞

  εn Θñn(s
–; z, r

⊥
, s) (15) 

 

are solutions of the system of recursive problems 
 

n = 0:  {
Ð

KQñ0 = 0, Θñ0 ⏐Ã0
 = 0,    Θñ0 ⏐ÃH

 = f
δ
 (s–; r

⊥
, s);  

 

n ≥ 1: {
Ð

KQñn = 0, Θñn ⏐Ã0 
= 0   Θñn ⏐ÃH 

= 
Ð

Rc Θcn–
](s–; H, r

⊥
, s), 
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and may be presented as nonlinear functionals (Θ
c0

 =(Θ, f
δ
) = Θ) 

 

Θñ1(s
–; z, r

⊥
, s) = (Θ, 

Ð

Rc Θ) = (Θ, [
Ð

Rc(Θ, f
δ
)]) = (Θ, 

Ð

Gñ fδ
) = 

1
2π ⌡⌠

Ω
–

d s
1
–

⌡⌠
–∞

∞

Q (s
1
– ; z, r

⊥
– r

⊥1
, s) [

Ð

RcΘ] × 

 

× (s–; H, r
⊥1

, s
1
–) d r

⊥1 = 
1
2π ⌡⌠

Ω
–

 d s
1
– 
⌡⌠
–∞

∞

 Q s
1
–; z, r

⊥
– r

⊥1
, s) d r

⊥1⌡⌠
Ω

+

Θ(s–; H, r
⊥1

, s+0) Pc(s1
–, s0

+) d s0
+; 

 

Θcn(s–; z, r
⊥
, s) = (Θ, 

Ð

Rc, Θcn–1
) = (Θ, 

Ð

Gc
n f

δ
) = (Θ, 

Ð

G c
n–1 [

Ð

RcΘ]) = 
1

2π 
⌡⌠
Ω

–

 d sn
–

⌡⌠
–∞

∞

 Q(sn
–; z, r

⊥
– r

⊥n, s) d r
⊥n× 

 

×  
1

2π 
⌡⌠
Ω

–

 d sn–1
– 

⌡⌠
–∞

∞

 d r
⊥n–1

 
⌡⌠
Ω

+

Pc(sn
–, sn–1

+ ) Q(sn–1
– ; H, r

⊥n– r
⊥n–1

, sn–1
+ ) d sn–1

+   
1
2π ⌡⌠

Ω
–

 d sn–2
–   

⌡⌠
–∞

∞

d r
⊥n–2

× 

 

× 
⌡⌠
Ω

+

Pc(sn–1
– , sn–2

+ ) Q(sn–2
– ; H, r

⊥n–1
– r

⊥n–2
, sn–2

+ ) d sn–2
+ ... 

1
2π ⌡⌠

Ω
–

d s
2
– 
⌡⌠
–∞

∞

d r
⊥2

 × 

 

×
⌡⌠
Ω

+

 Pc(s3
–, s

2
+) Q(s

2
–; H, r

⊥3
– r

⊥2
, s

2
+) d s

2
+  

1
2π ⌡⌠

Ω
–

d s
1
– 
⌡⌠
–∞

∞

 d r
⊥2 ⌡⌠

Ω
+

 Pc(s2
–, s

1
+) Q(s

1
–; H, r

⊥2
– r

⊥1
, s

1
+) d s

1
+×  

 

×
⌡⌠
Ω

+

Pc(s1
–, s0

+) Q(s–; H, r
⊥1

, s0
+) d s0

+ = 
1
2π ⌡⌠

Ω
–

 d sn
–  
⌡⌠
–∞

∞

 Q(sn
– ;z, r

⊥
– r

⊥n, s) d r
⊥n ×  

1
2π ⌡⌠

Ω
–

d sn–1
–  × 

 

× 
⌡⌠
–∞

∞

 [
Ð

RcΘ] s
n–1

– ; H, r
⊥n– r

⊥n–1
, sn

–) d r
⊥n–1  

1
2π ⌡⌠

Ω
–

d sn–2
–  

1
2π ⌡⌠

Ω
–

d sn–2
–  ; H, r

⊥n–1
– r

⊥n–2
, sn–1

– ) d r
⊥n–2 ... × 

 

× 
1
2π ⌡⌠

Ω
–

 d s
2
– × 

⌡⌠
–∞

∞

 [
Ð

RcΘ](s
2
–; H, r

⊥3
– r

⊥2
, s3

–) d r
⊥2  

1
2π ⌡⌠

Ω
–

d s
1
–  
⌡⌠
–∞

∞

 [
Ð

RcΘ](s
1
–; H, r

⊥2
– r

⊥1
, s

2
–) [

Ð

RcΘ](s–; H, r
⊥1

, s
1
–) d r

⊥1
. 

 

The sum of series (15) is an exact solution of the general boundary–value problem (11) 
 

Θc(s–; z, r
⊥
, s) = ∑

n=0

∞

 (Θ, 
Ð

Gc
n f

δ
) = (Θ, 

Ð

Yc fδ
), (16) 

where  
Ð

Yc fδ
 ≡ ∑

n=0

∞

 
Ð

Gc
n f

δ
 = [

Ð

E – 
Ð

Gc]
–1 f

δ
 (17) 

 

is the sum of the Neumann series over the order of interaction of radiation with a horizontally homogeneous anisotropically 
reflecting boundary. 
Terms of the parametric series 

Ψc(s
–; z, p, s) = ∑

n=0

∞

 εn Ψcn(s
–; z, p, s) (18) 

satisfy the system of recursive problems 
 

n = 0:  {
Ð

L( p) Ψñ0 = 0,  Ψñ0 ⏐Ã0 
= 0,  Ψñ0 ⏐ÃH 

= 
∨

f
δ
(s–; s);  

n ≥ 1: {
Ð

L( p) Ψñn = 0,  Ψñn ⏐Ã0 
= 0, Ψñn ⏐

ÃH 
= [

Ð

Rñ Ψñn–1
](s–; H, p, s), 

 

and for n ≥ 1 they are defined as nonlinear functionals (apparently, Ψñ0 = (Ψ,
 

∨

f
δ
) = Ψ) 

 

Ψñ1(s
–; z, p, s) = (Ψ, 

Ð

Rñ Ψ) = (Ψ, [
Ð

Rñ (Ψ, 
∨

f
δ
)]) = (Ψ, 

Ð

Qñ 

∨

f
δ
) = 

1
2π ⌡⌠

Ω
–

 Ψ(s
1
–; z, p, s) [

Ð

Rñ Ψ](s–; H, p, s
1
–) d s

1
–=  
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= 
1
2π ⌡⌠

Ω
–

 Ψ(s
1
–; z, p, s) d s

1
– 
⌡⌠
Ω

+

 Pc(s1
–, s

0
+) Ψ(s–; H, p, s

0
+) d s 

0
+ ; 

 

Ψñn(s
–; z, p, s) = (Ψ, 

Ð

Rñ Ψñn–1
) = (Ψ, 

Ð

Qñ
n 

∨

f
δ
) = (Ψ,

 

Ð

Q ñ
n–1[

Ð

Rñ Ψ]) = 
1
2π ⌡⌠

Ω
–

 Ψ(sn
–; z, p, s)[

Ð

Qñ
n 

∨

f
δ
] (s–; H, p, sn

–) d sn
–

 = 

 

= 
1
2π ⌡⌠

Ω
–

 Ψ(sn
–; z, p, s) d sn

– 
1
2π ⌡⌠

Ω
–

 [
Ð

Rñ Ψ](sn–1
– ; H, p, sn

–) d sn–1
–  × 

 

× 
1
2π ⌡⌠

Ω
–

 [
Ð

Rñ Ψ](sn–2
–  ; H, p, sn–1

–  ) d sn–2
–  ... 

1
2π ⌡⌠

Ω
–

 [
Ð

Rñ Ψ](s
2
–; H, p, s

3
–) d s

2
–  

1
2π ⌡⌠

Ω
–

 [
Ð

Rñ Ψ](s
1
–; H, p, s

2
–) × 

 

× [
Ð

Rñ Ψ](s–; H, p, s
1
–) d s

1
–

 = 
1
2π ⌡⌠

Ω
–

 Ψ(sn
–; z, p, s) d sn

–
  

1
2π ⌡⌠

Ω
–

d sn–1
– 

 
⌡⌠
Ω

+

 Pñ(sn
–, sn–1

+ ) Ψ(sn–1
– ; H, p, sn–1

+ ) d sn–1
+ 

 × 

 

× 
1
2π ⌡⌠

Ω
–

 d sn–2
– 

 
⌡⌠
Ω

+

 Pñ(sn–1
– , sn–2

+ ) Ψ(sn–2
– ; H, p, sn–2

+ ) d sn–2
+ 

 ... 
1
2π ⌡⌠

Ω
–

 d s
2
–  
⌡⌠
Ω

+

 Pñ(s3
–, s

2
+) Ψ(s

2
–; H, p, s

2
+) d s

2
+ × 

 

× 
1
2π ⌡⌠

Ω
–

d s
1
–  
⌡⌠
Ω

+

 Pñ(s2
–, s

1
+) Ψ(s

1
–; H, p, s

1
+) d s

1
+ 
⌡⌠
Ω

+

 Pñ(s1
–, s

0
+) Ψ(s–; H, p, s

0
+) d s

0
+ . 

 

The sum of series (18) is the exact solution to the problem (12) 
 

Ψñ = ∑
n=0

∞

 (Ψ, 
Ð

Qñ
n 

∨

f
δ
) = (Ψ, 

Ð

Zñ
 
∨

f
δ
), (19) 

 

Ð

Zñ
 
∨

f
δ
 ≡ ∑

n=0

∞

 
Ð

Qñ
n 

∨

f
δ
 = [

Ð

E – 
Ð

Qñ
 ]–1 

∨

f
δ
 (20) 

 

is the sum of the Neumann series over the order of interaction of radiation with the reflecting boundary in terms of the 
Fourier transforms. 

If we introduce a series over the order of reflection from the boundary 
 

Ôñ(z, r⊥
, s) = ∑

k=1

∞

 εk Ôck(z, r⊥
, s) (21) 

 

with its terms being solutions to the system of recursive problems 
 

k = 1: {
Ð

KÔñ1 = 0,   Ôñ1 ⏐Ã0 
= 0,  Ôñ1 ⏐ÃH 

= Ec(r⊥
, s);  

k ≥ 2: {
Ð

KÔñk = 0,   Ôñk ⏐Ã0 
= 0,  Ôñk ⏐ÃH 

= [
Ð

Rc Ôñk–1
](H, r

⊥
, s), 

 

then we obtain the following representations 
 

Ôñ1(z, r⊥
, s) = (Θ, Ec) = 

1
2π ⌡⌠

Ω
–

 d s
1
–

⌡⌠
–∞

∞

 Θ(s
1
–; z, r

⊥
– r

⊥1
, s) Ec(r⊥1

, s
1
–) d r

⊥1
; 

 

Ôñk(z, r⊥
, s) = (Θ, 

Ð

G ñ
k–1 Ec) = 

1
2π ⌡⌠

Ω
–

d sk
– 
⌡⌠
–∞

∞

 Θ(sk
–; z, r

⊥
– r

⊥k, s) d r
⊥k 

1
2π ⌡⌠

Ω
–

 d sk–1
–  × 

 

× 
⌡⌠
–∞

∞

 d r
⊥k–1

 
⌡⌠
Ω

+

 Pñ(sk
–, sk–1

+ )Θ(sk–1
– ; H, r

⊥k– r
⊥k–1

, sk–1
+ ) d sk–1

+  
1
2π ⌡⌠

Ω
–

 d sk–2
–  × 
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× 
⌡⌠
–∞

∞

d r
⊥k–2

 
⌡⌠
Ω

+

 Pñ(sk–1
– , sk–2

+ ) Θ(sk–2
– ; H, r

⊥k–1
– r

⊥k–2
, sk–2

+ ) d sk–2
+  ... 

1
2π ⌡⌠

Ω
–

 d s
2
– × 

 

× 
⌡⌠
–∞

∞

 d r
⊥2

 
⌡⌠
Ω

+

 Pñ(s3
–, s

2
+) Θ(s

2
–; H, r

⊥3
– r

⊥2
, s

2
+) d s

2
+ 

1
2π ⌡⌠

Ω
–

 d s
1
– 
⌡⌠
–∞

∞

 Eñ(r⊥1
, s

1
–) d r

⊥1 
× 

 

×
⌡⌠
Ω

+

 Pñ(s2
–, s

1
+) Θ(s

1
–; H, r

⊥2
– r

⊥1
, s

1
+) d s

1
+ = 

1
2π ⌡⌠

Ω
–

 d sk
– 
⌡⌠
–∞

∞

 Θ(sk
–; z, r

⊥
– r

⊥k, s) d r
⊥k 

1
2π ⌡⌠

Ω
–

 d sk–1
–  × 

 

× 
⌡⌠
–∞

∞

 [
Ð

Rñ Θ](sk–1
– ; H, r

⊥k– r
⊥k–1

, sk
–) d r

⊥k–1
 
1
2p 

⌡⌠
X

–

 d sk–2
– 

 
⌡⌠
–∞

∞

 [
Ð

Rñ Θ](sk–2
– ; H, r

⊥k–1
– r

⊥k–2
, sk–1

– ) d r
⊥k–2 

... 
1
2π ⌡⌠

Ω
–

 d s
2
–

 × 

 

×
⌡⌠
–∞

∞

 [
Ð

Rñ Θ](s
2
–; H, r

⊥3
– r

⊥2
, s

3
–) d r

⊥2
 
1
2π ⌡⌠

Ω
–

 
d s

1
– 
⌡⌠
–∞

∞

 Eñ(r⊥1
, s

1
–)[

Ð

Rñ Θ] (s
1
–; H, r

⊥2
– r

⊥1
, s

2
–) d r

⊥1 
. 

 

The sum of series (21) is an exact solution of the problem (8) 
 

Ôñ(z, r⊥
, s) = ∑

k=1

∞

 (Θ, 
Ð

G ñ
k–1 Ec) = (Θ, 

Ð

Yñ Ec), (22) 

 

where 
 

Ð

Yñ Ec≡ ∑
k=1

∞

 
Ð

G ñ
k–1

 Ec= ∑
k=0

∞

  

Ð

Gñ
k
 Ec[

Ð

E – 

Ð

G
c
]–1 Ec (23) 

 

is the sum of the Neumann series over the order of interaction of radiation with the reflecting boundary. 
Presentation (10) in terms of FI Θ

c
 makes it possible to obtain a solution to the problem (8) for various preset sources 

E
c
 with the effect of homogeneous reflecting boundary calculated in advance. The terms from series (21) are expressed in 

terms of FI and for k ≥ 2 these are nonlinear functionals which adequately describe the kth order process of interaction of 
radiation with the reflecting boundary for a preset irradiation of the boundary E

c
. In terms of Fourier transforms we have 

Ð

Ôñ(z, p, s) = ∑
k=1

∞

 εk 
Ð

Ôñk(z, p, s), (24) 

 

where the terms of the series are solutions to the recursive problems 
 

k = 1:  {
Ð

L(p) 
∨
Ôñ1= 0,   

∨
Ôñ1 ⏐Ã0 

= 0,  
∨
Ôñ1 ⏐ÃH 

= 
∨
Ec( p, s);  

 

k ≥ 2: {
Ð

L(p) 
∨
Ôñk = 0,  

∨
Ôñk ⏐Ã0 

= 0,  
∨
Ôñk ⏐ÃH 

= [
Ð

Rñ 
∨
Ôñk–1

](H, p, s). 

 
For k ≥ 2 they are presented as linear functionals 
 

∨
Ôñ1(z, p, s) = (Ψ, 

∨
Ec) = 

1
2π ⌡⌠

Ω
–

 Ψ(s
1
–; z, p, s) 

∨
Ec( p, s

1
–) d s

1
–; 

 

∨
Ôñk(z, p, s) = (Ψ, 

Ð

Q ñ 
k–1

∨
Ec) = 

1
2π ⌡⌠

Ω
–

 Ψ(sk
–; z, p, s) d sk

– 
1
2π ⌡⌠

Ω
–

 [
Ð

RñΨ](sk–1
– ; H, p, sk

–) d sk–1
–  × 

 

× 
1
2π ⌡⌠

Ω
–

 [
Ð

Rñ Ψ](sk–2
– ; H, p, sk–1

– ) d sk–2
–  ... 

1
2π ⌡⌠

Ω
–

 [
Ð

Rñ Ψ](s
2
–; H, p, s

3
–) d s

2
– 

1
2π ⌡⌠

Ω
–

 [
Ð

Rñ Ψ](s
1
–; H, p, s

2
–) × 

 

× 
∨
Ec( p, s

1
–) d s

1
– = 

1
2π ⌡⌠

Ω
–

 Ψ(sk
–; z, p, s) d sk

–  
1
2π ⌡⌠

Ω
–

 d sk–1
– 

⌡⌠
Ω

+

 Pc(sk
–, sk–1

+ ) Ψ(sk–1
– ; H, p, sk–1

+ ) d sk–1
+  × 
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× 
1
2π ⌡⌠

Ω
–

d sk–2
– 

⌡⌠
Ω

+

 Pc(sk–1
– , sk–2

+ ) Ψ(sk–2
– ; H, p, sk–2

+ ) d sk–2
+  ... 

1
2π ⌡⌠

Ω
–

 d s
2
–

⌡⌠
Ω

+

 Pc(s3
–, s

2
+) Ψ(s

2
–; H, p, s

2
+) d s

2
+ × 

 

× 
1
2π ⌡⌠

Ω
–

 
∨
Ec(p, s

1
–) d s

1
–

⌡⌠
Ω

+

 Pc(s2
–, s

1
+) Ψ(s

1
–; H, p, s

1
+) d s

1
+. 

 

The sum of series (24) is the exact solution of the Fourier transform of the problem (8) 
 

∨
Ôc(z, p, s) = ∑

k=1

∞

 (Ψ, 
Ð

Q ñ 
k–1 

∨
Ec) = (Ψ, 

Ð

Zñ 
∨
Ec), (25) 

 

where 
 

Ð

Zñ 

∨
Ec≡ ∑

k=1

∞

 
Ð

Q ñ 
k–1

 

∨
Ec= ∑

k=0

∞

 
Ð

Qñ
k
 

∨
Ec = [

Ð

E – 

Ð

Q
c
]–1 

∨
Ec (26) 

 

is the sum of the Neumann series in terms of Fourier transforms. 
 

OPTICAL TRANSFER OPERATOR INVOLVING A HORIZONTALLY INHOMOGENEOUS OPERATOR OF 

REFLECTION WITH AND WITHOUT THE SEPARATION OF SPATIAL AND ANGULAR DEPENDENCES 
 

Boundary–value problem (9) can be solved using linear functionals 
 

Ô
ν
z, r

⊥
, s) = (Θ

ν
, E

ν
) , 

∨
Ô

ν
(z, p, s) = (Ψ

ν
, 

∨
E

ν
), (27) 

 

where FI Θv(s
-, z, r

⊥
,s) is the solution to the general boundary–value problem 

 

{
Ð

K Θ
ν
= 0, Θ

ν ⏐Ã0 
= 0, Θ

ν ⏐ÃH 
= ε 

Ð

R
ν
Θ

ν + f
δ
(s–; r

⊥
, s), (28) 

 

and the SFC Ψ
ν
 (s–, z, p, s) = F[Θ

ν
] is the solution of the complex equation of radiation transfer 

 

{
Ð

L(p) Ψ
ν
= 0, Ψ

ν ⏐Ã0 
= 0, Ψ

ν ⏐ÃH 
= ε 

∨
R

ν
Ψ

ν + 

∨

f
δ
 (s–; s). (29) 

 

Let us now introduce the operations of interaction of radiation with the boundary using FI Θ: 
 

[
Ð

G
ν f] (s

–; H, r
⊥
, s)=

∨
R

ν
(Θ, f ) = 

1
2π ⌡⌠

Ω
–

 d s–′
⌡⌠
–∞

∞

 f(s–; r
⊥
′ , s–′) d r

⊥
′
⌡⌠
Ω

+

 P
ν
(r

⊥
, s, s+)Θ(s–′; H, r

⊥
– r

⊥
′, s+) d s+ (30) 

 

or the SFC Ψ (Ref. 15) 
 

[ 
Ð

Q
ν 

∨

f](s–; H, p, s)=F [
Ð

G
ν
 f]=

∨
R

ν
 (Ψ, 

∨

f)=
1
2π ⌡⌠

Ω
–

 d s–′ 
1

(2π)2 ⌡⌠
–∞

∞

 
∨

f (s–; p′ s–′) d p′ 
⌡⌠
Ω

+

 

∨

P
ν
( p– p′, s, s+)Ψ(s–′; H, p′, s+) d s+. (31) 

 

The components of perturbation series 
 

Θ
ν
(s–; z, r

⊥
, s) = ∑

n=0

∞

 εn Θ
νn(s

–; z, r
⊥
, s) (32) 

 
satisfy the system of recursive problems 
 

n = 0:  {
Ð

Ê Q
ν0

= 0, Θ
ν0 ⏐Ã0 

= 0, Θ
ν0 ⏐ÃH 

= f
δ
(s–; r

⊥
, s);  

n ≥ 1: {
Ð

K Q
νn= 0, Θ

νn ⏐Ã0 
=0, Θ

νn ⏐ÃH 
=[

Ð

R
ν
 Θ

νn–1
](s–; H, r

⊥
, s) 

 

and are presented in the form of functionals (Θ
v0

 =(Θ, f
δ
) = Θ) 

 

Θ
ν1

(s–; z, r
⊥
, s) = (Θ, 

Ð

R
ν
 Θ) = (Θ, 

Ð

G
ν fδ

) = 
1
2π ⌡⌠

Ω
–

 d s–
1
 
⌡⌠
–∞

∞

 Θ(s–
1
; z, r

⊥
– r

⊥1
, s) × [

Ð

R
ν
 Θ] (s–; H, r

⊥1
, s–

1
) d r

⊥1
 = 
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= 
1
2π ⌡⌠

Ω
–

 d s–
1
 
⌡⌠
–∞

∞

Θ(s–
1
; z, r

⊥
– r

⊥1
, s) d r

⊥1 ⌡⌠
Ω

+

 P
ν
(r

⊥1
, s–

1
, s+

0
) Θ (s–; H, r

⊥1
, s+

0
) d s+

0
; 

 

Θ
νn(s

–; z, r
⊥
, s) = (Θ, 

Ð

R
ν
 Θvn–1

) = (Θ, 
Ð

G
ν

n
 fδ

) = (Θ, 
Ð

G
ν 

n–1
 [

Ð

R
ν
 Θ]) = 

1
2π ⌡⌠

Ω
–

 d s–n ⌡⌠
–∞

∞

Θ(s–n; z, r⊥
– r

⊥n, s) d r
⊥n× 

× 
1
2π ⌡⌠

Ω
–

 d s – 
n–1

 
⌡⌠
–∞

∞

d r
⊥n–1

 
⌡⌠
Ω

+

 P
ν
(r

⊥n, s
–
n, s

+ 
n–1

)Θ(s – 
n–1

; H, r
⊥n– r

⊥n–1
, s + 

n–1
) d s +

n–1
 ×  

× ... 
1
2π ⌡⌠

Ω
–

 d s–
2

 

⌡⌠
–∞

∞

d r
⊥2 ⌡⌠

Ω
+

 P
ν
(r

⊥3
, s–

3
, s+

2
) Θ(s–

2
; H, r

⊥3
– r

⊥2
, s+

2
) d s+

2
 

1
2π ⌡⌠

Ω
–

 d s–
1
 
⌡⌠
–∞

∞

d r
⊥1 ⌡⌠

Ω
+

 P
ν
(r

⊥2
, s–

2
, s+

1
) Θ (s–

1
; H, r

⊥2
– r

⊥1
, s+

1
) ds+

1
 × 

× 
⌡⌠
Ω

+

P
ν
(r

⊥1
, s–

1
, s+

0
) Θ (s–; H, r

⊥1
, s+

0
) d s+

0
. 

 

The sum of series (32) is an exact solution to the general boundary–value problem (28) 
 

Θ
ν
(s–; z, r

⊥
, s) = ∑

n=0

∞

 (Θ, 
Ð

G
ν

n
 fδ

) = (Θ, 
Ð

Y
ν

 f
δ
), (33) 

 

where 
Ð

Y
ν

 f
δ
 ≡ ∑

n=0

∞

 
Ð

G
ν

n
 fδ

 = [
Ð

E  – 
Ð

G
ν
]–1 f

δ
 (34) 

is the Neumann series over the orders of interaction of radiation with the horizontally inhomogeneous anisotropically reflecting 
boundary. 
 

The terms of the parametric series 
 

Ψ
ν
(s–; z, p, s) = ∑

n=0

∞

 εn Ψ
νn(s

–; z, p, s) (35) 

 

are solutions of the system of recursive problems 
 

n = 0: {
Ð

L( p) Y
ν0

= 0, Ψ
ν0 ⏐Ã0 

= 0, Ψ
ν0 ⏐ÃH 

= 
∨
f

δ
(s–; s);  

n  ≥  1: {
Ð

L( p) Y
νn= 0, Ψ

νn ⏐Ã0 
= 0, Ψ

νn ⏐ÃH 
= [

∨
R

ν
 Ψ

νn–1
] (s–; H, p, s); 

 

and for n ≥ 1 are sought in terms of nonlinear functionals (Ψ
ν0

= (Ψ, 
∨
f

δ
)=Ψ) 

 

Ψ
ν1

(s–; z, p, s) = (Ψ, 
∨
R

ν
 Ψ)= (Ψ, 

Ð

Q
ν 

∨
f

δ
) = 

1
2π ⌡⌠

Ω
–

 Ψ(s–
1
; z, p, s) [

∨
R

ν
 Ψ] (s–; H, p, s–

1
) d s–

1
=  

 

= 
1
2π ⌡⌠

Ω
–

 Ψ(s–
1
; z, p, s) d s–

1
 × 

1
(2π)2 ⌡⌠

–∞

∞

 d p
0 ⌡⌠

Ω
+

 
∨
P

ν
( p – p

0
, s–

1
, s+

0
)Ψ(s–; H, p

0
, s+

0
) d s+

0
; 

 

Ψ
νn(s

–; z, p, s) = (Ψ, 
∨
R

ν
 Ψ

νn–1
) = (Ψ, 

Ð

Q
ν

n–1[
∨
R

ν
 Ψ]) =(Ψ, 

Ð

Q
ν

n
 

∨
f

δ
) = 

1
2π ⌡⌠

Ω
–

 Ψ(s–n; z, p, s) d s–n 
1
2π ⌡⌠

Ω
–

 d s –
n–1

× 

 

× 
1

(2π)2 ⌡⌠
–∞

∞

 d pn–1 
× 
⌡⌠
Ω

+

 
∨
P

ν
( p – pn–1

, s–n, s
+ 

n–1
)Ψ(s – 

n–1
; H, pn–1

, s +
n–1

) d s +
n–1

 ... 
1
2π ⌡⌠

Ω
–

 d s–
2
 

1
(2π)2 ⌡⌠

–∞

∞

d p
2
 × 

 

× 
 ⌡⌠
Ω

+

 
∨
P

ν
( p

3 
– p

2
, s–

3
, s+

2
) Ψ (s–

2
; H, p

2
, s+

2
) d s+

2
 
1
2π ⌡⌠

Ω
–

 d s–
1
 

1
(2π)2 × 

⌡⌠
–∞

∞

d p
1 ⌡⌠

Ω
+

 
∨
P

ν
( p

2 
– p

1
, s–

2
, s+

1
)Ψ(s–

1
; H, p

1
, s+

1
) d s+

1
 × 
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× 
1

(2π)2 ⌡⌠
–∞

∞

 d p
0⌡⌠

Ω
+

 
∨
P

ν
( p

1
– p

0
, s–

1
, s+

0
)Ψ(s–; H, p

0
, s+

0
) d s+

0
. 

 

The sum of series (35) is the exact solution to the problem (29) 
 

Ψv(s–; z, p, s) = ∑
n=0

∞

 (Ψ, 
Ð

Q
ν

n
 

∨
f

δ
) = (Ψ, 

Ð

Z
ν

 
∨
f

δ
), (36) 

 

where 
 

Ð

Z
ν

 
∨
f

δ 
≡ ∑

n=0

∞

  
Ð

Q
ν

n
 

∨
f
d
= [

Ð

E  – 
Ð

Q
ν
]–1 

∨
f

δ
  (37) 

 

is the sum of the Neumann series over the orders of interaction of radiation with the boundary in terms of Fourier transforms. 
If we introduce a series over the order of reflection from the boundary 

 

Ô
ν
(z, r

⊥
, s) = ∑

k=1

∞

 εk Ô
νk(z, r

⊥
, s) (38) 

 

with its terms found from the system of recursive problems 
 

k = 1:  {
Ð

Ê Ô
ν1

= 0,  Ô
ν1 ⏐Ã0 

= 0,  Ô
ν1 ⏐ÃH 

= Ev(r⊥
, s);  

k ≥ 2: {
Ð

K Ô
νk=0, Ô

νk ⏐Ã0
=0, Ô

νk ⏐ÃH
=[

Ð

Rv Ôνk–1
](H, r

⊥
, s); 

 

then 

Ô
ν1

 = (Θ, E
ν
) = 

1
2π ⌡⌠

Ω
–

 d s–
1
 
⌡⌠
–∞

∞

 Θ(s–
1
; z, r

⊥
– r

⊥1
, s) E

ν (r⊥1
, s–

1
) d r

⊥1
; 

 

Ô
νk(z, r

⊥
, s) = (Θ, 

Ð

Rv Ôνk–1
) = (Θ, 

Ð

G
ν 

k–1
 Eν

) = 
1
2π ⌡⌠

Ω
–

 d s–k ⌡⌠
–∞

∞

 Θ(s–k; z, r⊥
– r

⊥k, s) d r
⊥k 

1
2π ⌡⌠

Ω
–

 d s – 
k–1

 
⌡⌠
–∞

∞

 d r
⊥k–1

× 

 

×
⌡⌠
Ω

+

 P
ν
(r

⊥k, s
–
k, s

+ 
k–1

) Θ(s – 
k–1

; H, r
⊥k– r

⊥k–1
, s +

k–1
) d s +

k–1
 ... 

1
2π ⌡⌠

Ω
–

 d s–
2
 
⌡⌠
–∞

∞

  d r
⊥2 ⌡⌠

Ω
+

 P
ν
(r

⊥3
, s–

3
, s+

2
) Θ(s–

2
; H, r

⊥3
– r

⊥2
, s+

2
) d s+

2
× 

 

× 
1
2π ⌡⌠

Ω
–

 d s–
1
 
⌡⌠
–∞

∞

 E
ν (r⊥1

, s–
1
) d r

⊥1
 
⌡⌠
Ω

+

 P
ν
(r

⊥2
, s–

2
, s+

1
) Θ (s–

1
; H, r

⊥2
– r

⊥1
, s+

1
) d s+

1
. 

 

The sum of series (38) is the exact solution of the general boundary problem (9) 
 

Ô
ν
(z, r

⊥
, s) = ∑

k=1

∞

 (Θ, 
Ð

G
ν 

k–1
 Eν

) = (Θ, 
Ð

Y
ν
 E

ν
), (39) 

 

where 
Ð

Y
ν
 E

ν ≡ ∑
k=1

∞

  
Ð

G
ν 

k–1 Ev = ∑
k=0

∞

 
Ð

G
ν

k E
ν
=[

Ð

E – 

Ð

G
v
]–1 E

ν
 (40) 

 

is the sum of the Neumann series over the orders of reflections from the boundary. 
 
In terms of Fourier transforms 

 

∨
Ô

ν
(z, p, s) = ∑

k=1

∞

 εk 
∨
Ô

νk(z, p, s), (41) 

 

where the components are solutions of the system of recursive problems 
 

k = 1:  {
Ð

L( p) 
∨
Ô

ν1
= 0, 

∨
Ô

ν1 ⏐Ã0 
= 0, 

∨
Ô

ν1 ⏐ÃH 
= 

∨
E

ν
( p, s);  
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k ≥ 2: {
Ð

L( p) 
∨
Ô

νk= 0, 
∨
Ô

νk ⏐Ã0 
= 0, 

∨
Ô

νk ⏐ÃH 
= [

∨
R

ν
 

∨
Ô

νk–1
](H, p, s); 

 

and are defined as functionals  
 

∨
Ô

ν1
(z, p, s) = (Ψ, 

∨
E

ν
) = 

1
2π 

⌡⌠
Ω

–

 Ψ(s
1
–; z, p, s) 

∨
E

ν
( p, s

1
–) d s

1
–; 

 

∨
Ô

νk(z, p, s) = (Ψ, 
∨
R

ν
 

∨
Ô

νk–1
) = (Ψ, 

Ð

Q
ν 

k–1
∨
E

ν
) = 

1
2π ⌡⌠

Ω
–

 Ψ(sk
–; z, p, s) d sk

– 
1
2π ⌡⌠

Ω
–

 d sk–1
–  

1
(2π)2 ⌡⌠

–∞

∞

  d pk–1 
× 

× 
⌡⌠
Ω

+

 
∨
P

ν
( p – pk–1

, s–k, s
+ 

k–1
)Ψ(s – 

k–1
; H, pk–1

, s +
k–1

) d s +
k–1

 ... 
1
2π ⌡⌠

Ω
–

 d s–
2
 

1
(2π)2 ⌡⌠

–∞

∞

 d p
2 ⌡⌠

Ω
+

 
∨
P

ν
( p

3
– p

2
, s–

3
, s+

2
)× 

× Ψ(s–
2
; H, p

2
, s+

2
) d s+

2
  

1
2π ⌡⌠

Ω
–

 d s–
1
 

1
(2π)2 ⌡⌠

–∞

∞

 
∨
E

ν
( p

1
, s–

1
) d p

1 ⌡⌠
Ω

+

 
∨
P

ν
( p

2
– p

1
, s–

2
, s+

1
)Ψ(s–

1
; H, p

1
, s+

1
) d s+

1
 . 

 

The sum of series (41) is the exact solution of the problem (9) expressed in terms of Fourier transforms 
 

∨
Ô

ν
(z, p, s) = ∑

k=1

∞

 (Ψ, 
Ð

Q
ν 

k–1 
∨
E

ν
) = (Ψ, 

Ð

Z
ν
 
∨
E

ν
), (42) 

 

where 
 

Ð

Z
ν
 

∨
E

ν
≡ ∑

k=1

∞

 
Ð

Q
ν 

k–1 
∨
E

ν
 = ∑

k=0

∞

  
Ð

Q
ν

k
 

∨
E

ν
= [

Ð

E–
Ð

Q
ν
]–1 

∨
E

ν
 (43) 

 

is the sum of Neumann series over the orders of reflection from the boundary in terms of Fourier transforms. 
If spatial and angular dependences may be separated in the kernel of the operator of reflection (as in Ref. 2)  

 

P
ν
(r

⊥
, s, s+) = q(r

⊥
) Pñ(s, s

+),  
 

[
Ð

R
ν
 Ô](H, r

⊥
, s) = q(r

⊥
)[

Ð

RH Ô](H, r
⊥
, s), 

 

[
Ð

RH Ô](H, r
⊥
, s) ≡ 

⌡⌠
Ω

+

 Ô(H, r
⊥
, s+) Pñ(s, s

+) d s+, 

 

then we have a particular case for the presentation (30) 
 

[
Ð

G
ν
 f](s–; H, r

⊥
, s)= 

Ð

R
ν
(Θ, f ) = q(r

⊥
)[

Ð

RH (Θ, f )]= q(r
⊥
)([

Ð

RH Θ], f) = q(r
⊥
) 

1
2π ⌡⌠

Ω
–

 d s–′ 
⌡⌠
–∞

∞

 f(s–; r
⊥
′ , s–′) d r

⊥
′× 

 

× 
⌡⌠
Ω

+

 Pc(s, s
+)Θ(s–′; H, r

⊥
– r

⊥
′ , s+) d s+ = q(r

⊥
) 

1
2π ⌡⌠

Ω
–

 d s–′ 
⌡⌠
–∞

∞

 f(s–; r
⊥
′ , s–′)[

Ð

RH Θ](s–′; H, r
⊥
– r

⊥
′ , s) d r

⊥
′ , 

 

[
Ð

RH Θ](s–; H, r
⊥
, s) = 

⌡⌠
Ω

+

 Pc(s, s
+)Θ(s–; H, r

⊥
, s+) d s+. 

 

In terms of the Fourier transforms we obtain a particular form of the presentation (31) 
 

[
Ð

R
ν

∨
Ô](H, p, s)=F[

Ð

R
ν
 Ô](H, p, s)=

1
(2π)2 

⌡⌠
–∞

∞

  

∨
q( p– p′)d p′

⌡⌠
Ω

+

 

∨
Ô(H, p′, s+) Pñ(s, s

+) d s+ =
1

(2π)2⌡⌠
–∞

∞

 
∨
q(p– p′) d p′ [

Ð

RH 

∨
Ô](H, p′, s) d p′, 

[
Ð

RH 
∨
Ô](H, p, s) = 

⌡⌠
Ω

+

 
∨
Ô(H, p, s+) Pñ(s, s

+) d s+; 
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[
Ð

Q
ν
 

∨
f](s–; H, p, s) = F [

Ð

G
ν
 f] = 

∨
Rv(Ψ, 

∨
f) = 

1
2π ⌡⌠

Ω
–

 d s–′ 
1

(2π)2 ⌡⌠
–∞

∞

  
∨
f(s–; p′, s–′) 

∨
q( p– p′) d p′ 

⌡⌠
Ω

+

 Pc(s, s
+)Ψ(s–′; H, p′, s+) d s+= 

 

= 
1
2π ⌡⌠

Ω
–

 d s–′ 
1

(2π)2 ⌡⌠
–∞

∞

 
∨
q(ð – p′) 

∨
f(s–; p′, s–′) [

Ð

RH Ψ](s–′; H, p′, s) d p′. 

 

[
Ð

RH Ψ](s–; H, p, s) = 
⌡⌠
X

+

 Pc(s, s
+)Ψ(s–; H, p, s+) d s+ . 

 

In the case when spatial and angular variables are split, one may find that the most general expressions for the n 
approximations of FI Θ

ν
 and SFC Ψ

ν
, of the terms of series (38) and (41), obtained above, are reduced to the following form: 

 

Θ
νn(s

–; z, r
⊥
, s) = 

1
2π ⌡⌠

Ω
–

 dsn
– 
⌡⌠
–∞

∞

 Θ(sn
–

 ; z, r
⊥
 – r

⊥n , s) q (r
⊥n) dr

⊥n 
1
2π ⌡⌠

Ω
–

 dsn–1
–

 
⌡⌠
–∞

∞

 q (r
⊥n–1

) [
Ð

RH Θ] (sn–1
–

 ; H, r
⊥n – r

⊥n–1
 , sn

–) dr
⊥n–1

× 

× ... 
1
2π ⌡⌠

Ω
–

ds
2
–

⌡⌠
–∞

∞

q (r
⊥2

) [
Ð

RH Θ] (s
2
–

 ; H, r
⊥3

–r
⊥2

 , s
3
–)dr

⊥2
 
1
2π ⌡⌠

Ω
–

 ds
1
–

⌡⌠
–∞

∞

 q (r
⊥1

) [
Ð

RH Θ](s
1
–; H, r

⊥2
–r

⊥1
, s

2
–)[

Ð

RH Θ](s–; H, r
⊥1

,s
1
–) d r

⊥1
 ; 

 

Ψ
νn(s

–; z, p, s)= 
1
2π ⌡⌠

Ω
–

 Ψ(sn
–; z, p, s) dsn

–
 

1
(2π)2⌡⌠

–∞

∞ ∨
q( p– pn–1

) d pn–1
 
1
2π ⌡⌠

Ω
–

 [
Ð

RH Ψ](sn–1
–

 ; H, pn–1
, sn

–) dsn–1
–  ... 

1
(2p)2⌡⌠

–∞

∞

 

∨
q( p

2
–p

1
) d p

1 
× 

 

× 
1
2π ⌡⌠

Ω
–

 [
Ð

RH Ψ] (s
1
–

 ; H, p
1
, s

2
–) ds

1
–

 
1

(2π)2 ⌡⌠
–∞

∞

 

∨
q( p

1
–p

0
) [

Ð

RH Ψ] (s–; H, p
0
, s

1
–) d p

0
 = 

1
(2π)2 ⌡⌠

–∞

∞

 

∨
q( p– pn–1

) d pn–1
 × 

 

× ... 
1

(2π)2 ⌡⌠
–∞

∞

 

∨
q( p 

1
– p

0
) d p

0
 
1
2π ⌡⌠

Ω
–

 Ψ(sn
–; z, p, s) dsn

– 
1
2π ⌡⌠

Ω
–

 [
Ð

RH Ψ] (sn–1
–  ; H, pn–1

, sn
–) dsn–1

– × 

 

× .. 
1
2π ⌡⌠

Ω
–

 [
Ð

RH Ψ] (s
1
–; H, p

1
, s

2
–) [

Ð

RH Ψ] (s–; H, p
0
, s

1
–) ds

1
– ; 

 

Ô
νk(z, r⊥

, s) = 
1
2π ⌡⌠

Ω
–

 dsk
– 
⌡⌠
–∞

∞

 Θ(sk
– ; z, r

⊥
 – r

⊥k , s) q (r⊥k) dr
⊥k 

1
2π ⌡⌠

Ω
–

 dsk–1
–  
⌡⌠
–∞

∞

 q (r
⊥k–1

) [
Ð

RH Θ](sk–1
– ; H, r

⊥k – r
⊥k–1

 , sk
–) dr

⊥k–1
× 

 

× ... 
1
2π ⌡⌠

Ω
–

 ds
2
–

 
⌡⌠
–∞

∞

 q (r
⊥2

) [
Ð

RH Θ] (s
2
– ; H, r

⊥3
 – r

⊥2
 , s

3
–) dr

⊥2
 
1
2π ⌡⌠

Ω
–

 ds
1
– 
⌡⌠
–∞

∞

 [R̂H Θ] (s
1
– ; H, r

⊥2
 – r

⊥1
 , s

2
–) Ev(r⊥1

, s
1
–) dr

⊥1
 ; 

 

Ô
∨

νk (z, p, s)=
1
2π ⌡⌠

Ω
–

 Ψ(sk
–; z, p, s) dsk

–
 

1
(2π)2 ⌡⌠

–∞

∞

 

∨
q( p– pk–1

) d pk–1
 
1
2π ⌡⌠

Ω
–

 [
Ð

RH Ψ] (sk–1
–

 ; H, pk–1
, sk

–) dsk–1
–

 ... 
1
2π ⌡⌠

Ω
–

 ds
2
–

 × 

 

× 
1

(2π)2 ⌡⌠
–∞

∞

 

∨
q( p

3
–p

2
) [

Ð

RH Ψ] (s
2
–

 ; H, p
2
, s

3
–) d p

2
 
1
2π ⌡⌠

Ω
–

 ds
1
–

 
1

(2π)2 ⌡⌠
–∞

∞

 

∨
q( p

2
–p

1
) 

∨
E

ν
( p

1
, s

1
–) [

Ð

RH Ψ] (s
1
–

 ; H, p
1
, s

2
–) d p

1
 . 

 
OPTICAL TRANSFER OPERATOR INVOLVING A 

HORIZONTALLY INHOMOGENEOUS REFLECTION 

OPERATOR WITH SEPARATED OFF 

HORIZONTALLY HOMOGENEOUS COMPONENT 
 

Problem (1) may be solved in several ways. 
Technique 1. Presentation in the form of a linear functional 
 

Ô(z, r
⊥
, s) = (ΘR, E) (44) 

 

in terms of the FI Θ
R
(s–; z, r

⊥
, s) which is a solution of the 

problem  
 

{ K
Ð

QR=0 , QR |
Γ0

=0 , QR |ΓH
=ε R

Ð

 QR+f
δ
(s–; r

⊥
, s) , (45) 

 

or, in terms of Fourier transforms 
 

Ô
∨

(z, p, s) = F [(ΘR, E)] = (ΨR, 
∨
E) (46) 
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using SFC Ψ
R
 (s–; z, p, s) = F [ΘR] which is a solution of 

the problem 
 

{ L
Ð

 ( p)ΨR=0 , ΨR |
Γ0

=0 , ΨR |
ΓH

=ε R
∨

ΨR+f
∨

δ
(s–; s). (47) 

 

Let us define the operations of interaction of radiation 
with the boundary using the FI Θ 
 

[G
Ð

R f )(s
–; H, r

⊥
, s) = [G

Ð

c f ](s
–; H, r

⊥
, s) + 

+ [G
Ð

ν f ](s
–; H, r

⊥
, s) = R

Ð

(Θ, f ) = ([R
Ð

c Q], f ) + 

+ R
Ð

ν (Θ, f ) (48) 
 

and the SFC Ψ 
 

[Q
Ð

R f
∨
](s–; H, p, s)=F[G

Ð

R f ]=[ ]Q
Ð

c f
∨

(s–; H, p, s)+ 

+ [G
Ð

ν f ](s
–; H, p, s) = R

∨
(Ψ, f

∨
) = R

∨
ν (Ψ, f

∨
) + ([R

Ð

c Ψ], f
∨
). (49) 

 

Now let us introduce a parametric series 
 

ΘR(s–; z, r
⊥
, s) = ∑

n=0

∞

  εn ΘRn (s
–; z, r

⊥
, s)  

 

with the components satisfying the system of recursive 
problems 
 

n = 0 : { K
Ð

QR0
=0 , QR0

|
Γ0

=0 , QR0
|
ΓH

=f
δ
(s–; r

⊥
, s); 

n ≥ 1:{K
Ð

QRn=0 , QRn |
Γ0

=0 , QRn |
ΓH

=[ ]R
Ð

QRn–1
(s–; H, r

⊥
, s) 

and explicitly expressed in terms of the FI Θ( s–; z, r
⊥
, s) 

 

ΘR0
(s–; z, r

⊥
, s) = (Θ, f

δ
) = Θ(s–; z, r

⊥
, s) ; 

 

ΘR n (s
–; z, r

⊥
, s) = (Θ, R

Ð

ΘR n–1
)=(Θ, G

Ð

R
n f 

δ
) =  

 

(Θ, G
Ð

R 
n–1[ ]R

Ð

Q ) = (Θ, (G
Ð

c + G
Ð

ν
)n–1[ ]R

Ð

Q ) ; 
 

ΘR = ∑
n=0

∞

 (Θ, G
Ð

R
n f

δ
) = (Θ, Y

Ð

R fδ
) , (50) 

 

where 
 

Y
Ð

R fδ
 ≡ ∑

n=0

∞

 G
Ð

R
n f

δ
 = [E

Ð

 – G
Ð

R]–1
 
f

δ
 .  (51) 

 

In terms of Fourier transforms the terms of the series 
 

ΨR(s–; z, p, s) = ∑
n=0

∞

 εn ΨRn(s
–; z, p, s)  

 

are solutions of the system of recursive problems 
 

n =0 : { L
Ð

 ( p)ΨR0
=0 , ΨR0

|
Γ0

=0 , ΨR0
|
ΓH

=f
∨

δ
(s–; s) ; 

n≥1:

{ L
Ð

 (p)ΨRn=0 , ΨRn |
Γ0

=0, ΨRn |
ΓH

=[ ]R
∨

ΨRn–1
(s–; H, p, s) , 

 

which can be presented as functionals in terms of the SFC 
Ψ (s–; z, p, s) 
 

ΨR0
(s–; z, p, s) = (Ψ, f

δ
) = Ψ(s–; z, p, s) ; 

ΨRn(s
–; z, p, s) = (Ψ, R

∨
ΨRn–1

) = (Ψ, Q
Ð

R
n f

∨
δ
) =  

 

= (Ψ, Q
Ð

R
n–1[ ]R

∨
Ψ  ) = (Ψ, (Q

Ð

c + Q
Ð

ν
)n–1[ ]R

∨
Ψ  ) ; 

 

ΨR = ∑
n=0

∞

 (Ψ, Q
Ð

R
n f

∨
δ
) = (Ψ, Z

Ð

R f
∨

δ
) , (52) 

 

Z
Ð

R f
∨

δ
 ≡ ∑

n=0

∞

 Q
Ð

R
n f

∨
δ
 = [ ]E

Ð

 – Q
Ð

R

–1 
f
∨

δ
 . (53) 

 

Let us now define the operations  

[ ]G
Ð

νc f (s–; H, r
⊥
, s) = R

Ð

ν
(Θc, f ) , (54) 

 

[Q
Ð

νc f
∨
] (s–; H, p, s)=F[ ]G

Ð

νc f  = R
∨

ν
(Ψc, f

∨
) , (55) 

 

which are similar to G
Ð

ν
(30) and Q

Ð

ν
(31), respectively, and 

only differ from the latter by the functions of influence (Θ 
instead of Θc) and by SFCs (Ψ insread of Ψc), which allow 

for the contribution of horizontally homogeneous component 
of the reflection coefficient. 

One may introduce the series 
 

ΘR(s–; z, r
⊥
, s) = ∑

n=0

∞

 εnΘRñn(s
–; z, r

⊥
, s)  

with its components being solutions of the system of 
recursive problems 
 

n=0 : { K
Ð

QRñ0=0 , QRñ0|Γ0
=0 , QRñ0|ΓH

=R
Ð

ñQRñ0+f
δ
(s–; r

⊥
, s) , 

 

n ≥1 : {( K
Ð

QRcn=0 , QRcn |
Γ0

=0, QRcn |
ΓH

=R
Ð

ñQRñn+R
Ð

ν
QRñn–1

) , 

 

which are expressed in terms of the functionals with FI 
Θc(s

–; z, r
⊥
, s)  

 

ΘRc0(s
–; z, r

⊥
, s) = (Θc , fδ

) = Θc(s
–; z, r

⊥
, s) ; 

 

ΘRcn(s
–; z, r

⊥
, s) = (Θc , R

Ð

ν
ΘRcn–1

) = (Θc , G
Ð

ν

n
c fδ

) = 
 

= (Θc , G
Ð

νc
n–1[ ]R

Ð

ν
Qc ) ; 

 

ΘR = ∑
n=0

∞

 (Θc , G
Ð

ν

n
c fδ

) = (Θc , Y
Ð

νc fδ
) , (56) 

 

Y
Ð

νc fδ
 ≡ ∑

n=0

∞

 G
Ð

ν

n
c fδ

 = [ ]E
Ð

 – G
Ð

νc

–1 
f

δ
 . (57) 

 

In terms of Fourier transforms 
 

ΨR(s–; z, p, s) = ∑
n=0

∞

 εn ΨRcn(s
–; z, p, s) ; 

n=0 : { L
Ð

 ( p)ΨRc0=0 , ΨRc0|Γ0
=0 , ΨRc0|ΓH

=R
Ð

cΨRc0+f
∨

δ
(s–; s) ; 

n ≥ 1: { L
Ð

 ( p)ΨRcn=0 , ΨRcn |
Γ0

=0 , ΨRcn |
ΓH

=R
Ð

cΨRcn+R
∨

ν
ΨRcn–1

; 

ΨRc0(s
–; z, p, s) = (Ψc , f

∨
δ
) = Ψc(s

–; z, p, s) ; 
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ΨRcn(s
–; z, p, s) = (Ψc , R

∨
ν
ΨRcn–1

) = (Ψc , Q
Ð

ν

n
c f

∨
δ
) = 

 

= (Ψc , Q
^

mc
n–1[ ]R

∨
m
Yc  ) ; 

 

ΨR = ∑
n=0

∞

 (Ψc , Q
Ð

ν

n
c f

∨
δ
) = (Ψc , Z

Ð

νc f
∨

δ
) , (58) 

 

Z
Ð

νc f
∨

δ
 = ∑

n=0

∞

 Q
Ð

ν

n
c f

∨
δ
 = [ ]E

Ð

 – Q
Ð

νc

–1
f
∨

δ
 . (59) 

 

Let us now introduce the operations 
 

[ ]G
Ð

cν
 f  (s–; H, r

⊥
, s) = R

Ð

ñ(Θ
ν
, f ) ; (60) 

 

[ ]Q
Ð

cν
 f
∨

 (s–; H, p, s)=F [ ]G
Ð

cν
 f =R

Ð

c (Ψ
ν
, f

∨
) , (61) 

 

similar to G
Ð

ν
(30) and Q

Ð

ν
(31), in which their FI Θ and SFC 

Ψ are replaced by FI Θ
ν
, and SFC Ψ

ν
, respectively, 

accounting for the contribution from horizontally 
inhomogeneous component of the reflection coefficient. 

For the terms of parametric series 
 

ΘR(s–; z, r
⊥
, s) = ∑

n=0

∞

 εn ΘRνn(s
–; z, r

⊥
, s) , 

 

which are solutions of the system of recursive problems 
 

n=0 :{ K
Ð

QRν0
=0 , QRν0

|
Γ0

=0 , QRν0
|
ΓH

=R
Ð

ν
QRν0

+f
δ
(s–; r

⊥
, s) ; 

n ≥ 1:{ K
Ð

QRνn=0 , QRνn |
Γ0

=0 , QRνn |ΓH
 = R

Ð

ν
QRνn+R

Ð

cQRνn–1
 ; 

 

there exist presentations in the form of functionals 
with Θ

ν
(s–; z, r

⊥
, s)  

 

ΘRν0
(s–; z, r

⊥
, s) = (Θ

ν , fδ
) = Θ

ν
(s–; z, r

⊥
, s) ; 

 

ΘRνn(s
–; z, r

⊥
, s) = (Θ

ν , R
Ð

c ΘRνn–1
) = (Θ

ν , G
Ð

c
n

ν fδ
) = 

= (Θ
ν , G

Ð

cν

n–1[ ]R
Ð

cQν
) ; 

 

ΘR = ∑
n=0

∞

 (Θ
ν , G

Ð

c
n

ν fδ
) = (Θ

ν , Y
Ð

cν fδ
) , (62) 

 

Y
Ð

cν fδ
 ≡ ∑

n=0

∞

 G
Ð

c
n

ν fδ
 = [ ]E

Ð

 – G
Ð

cν

–1
f

δ
 . (63) 

 

And for the Fourier transforms 
 

ΨR(s–; z, p, s) = ∑
n=0

∞

 εnΨRνn(s
–; z, p, s) ; 

 

n=0:{ L
Ð

 ( p)ΨRν0
=0 , ΨRν0

|
Γ0

=0 , ΨRν0
|
ΓH

=R
∨

m
ΨRν0

+f
∨

δ
(s–; s) ; 

 

n ≥ 1:{ L
Ð

 ( p)ΨRνn=0 , ΨRνn |
Γ0

=0 , ΨRνn |ΓH
=R

∨
ν
ΨRνn+R

∨
cΨRνn–1

 ; 

 

ΨRν0
(s–; z, p, s) = (Ψ

ν , f
∨

δ
) = Ψ

ν
(s–; z, p, s) ; 

 

ΨRνn(s
–; z, p, s) = (Ψ

ν , R
Ð

cΨRνn–1
) = (Ψ

ν , Q
Ð

c
n

ν f
∨

δ
) = 

= (Ψ
ν , Q

Ð

cν

n–1[ ]R
Ð

cΨν
) ; 

 

ΨR = ∑
n=0

∞

 (Ψ
ν , Q

Ð

c
n

ν f
∨

δ
) = (Ψ

ν , Z
Ð

cν f
∨

δ
) , (64) 

 Z
Ð

cν f
∨

δ
 ≡ ∑

n=0

∞

 Q
Ð

c
n

ν f
∨

δ
 = [ ]E

Ð

 – Q
Ð

cν

–1 
f
∨

δ
 . (65) 

 

Technique 2. This is a presentation in the form of a series 
 

ÔR (z, r⊥
, s) = ∑

k=1

∞

 εk ΦRck(z, r⊥
, s) , 

 

with its terms being solutions of the system of recursive 
problems 
 

k =1 : { K
Ð

ÔRñ1=0 , ÔRñ1|Γ0
=0 , ÔRñ1|ΓH

=R
Ð

ñÔRñ1+E(r
⊥
, s) ; 

k ≥ 2 : { K
Ð

ÔRck=0 , ÔRck |
Γ0

=0 , ÔRck |
ΓH

=R
Ð

ñÔRñk+R
Ð

m
ÔRñk–1

 

 

and expressed either in terms of the FI Θc(s
–; z, r

⊥
, s)  

 

ÔRñ1(z, r⊥
, s)=(Θc , E) ; ÔRñk(z, r⊥

, s) = (Θc , R
Ð

ν
ÔRñk–1

)= 

= (Θc , G
Ð

νc
k–1E) , 

 

or the SFC Ψc(s
–; z, p, s)  

 

Ô
∨

Rñ1(z, p, s) = (Ψc , E
∨
) ;   

Ô
∨

Rñk(z, p, s) = (Ψc , R
∨

ν Ô
∨

Rñk–1
) = (Ψc , Q

Ð

νc
k–1 E

∨
) ; 

ÔR = ∑
k=1

∞

 (Θc , G
Ð

νc
k–1 E) = (Θc , Y

Ð

νc E) , (66) 

 

Y
Ð

νc E≡ ∑
k=1

∞

 G
Ð

νc
k–1

 E= ∑
k=0

∞

 G
Ð

ν

k
c E= [ ]E

Ð

 – G
Ð

νc
–1

 

E; (67) 

Ô
∨

R(z, p, s) = ∑
k=1

∞

 (Ψc , Q
Ð

νc
k–1 E

∨
) = (Ψc , Z

Ð

νc E
∨
) , (68) 

 

Z
Ð

νc E
∨
 ≡ ∑

k=1

∞

 Q
Ð

νc
k–1 E

∨
 = ∑

k=0

∞

 Q
Ð

ν

k
c E

∨
 = [ ]E

Ð

 – Q
Ð

νc
–1 E

∨
 . (69) 

 

Technique 3. This is a presentation in the form of a series 
 

ÔR(z, r
⊥
, s) = ∑

k=1

∞

 εkÔRνk(z, r⊥
, s)  

 

with its components satisfying the systems of recursive 
problems 
 

k=1 : { K
Ð

ÔRν1
=0 , ÔRν1

|
Γ0

=0 , ÔRν1
|
ΓH

= R
Ð

ν
ÔRν1

+E(r
⊥
, s) ; 

k ≥ 2 : { K
Ð

ÔRνk=0 , ÔRνk |
Γ0

=0 , ÔRνk |
ΓH

= R
Ð

ν
ÔRνk+R

Ð

ñÔRνk–1
 

 

and written either in terms of FI Θ
ν
(s–; z, r

⊥
, s)  

 

ÔRν1
(z, r

⊥
, s)=(Θ

ν
 , E) ;  

 

ÔRνk(z, r⊥
, s)= (Θ

ν
 , R

Ð

cÔRνk–1
) =(Θ

ν
 , G

Ð

cν

k–1E) , 
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or the SFC Ψ
v
(s–; z, p, s) when in terms of the Fourier 

transforms 
 

Ô
∨

Rν1
(z, p, s) = (Ψ

ν
 , E

∨
) ; Ô

∨
Rνk(z, p, s)=(Ψ

ν
 , R

Ð

c Ô
∨

Rνk–1
) =  

= (Ψ
ν
 , Q

Ð

cν

k–1 E
∨
) ; 

 

ÔR = ∑
k=1

∞

 (Θ
ν
 , G

Ð

cν

k–1E) = (Θ
ν
 , Y

Ð

cν E) , (70) 

 

Y
Ð

cν E≡ ∑
k=1

∞

 G
Ð

cν

k–1 E=∑
k=0

∞

  G
Ð

c
k

ν
E=[E

Ð

 – G
Ð

cν
]–1 E ; (71) 

 

Ô
∨

R(z, p, s) = ∑
k=1

∞

  (Ψ
ν
 , Q

Ð

cν

k–1 E
∨
) = (Ψ

ν
 , Z

Ð

cν E
∨
) , (72) 

 

Z
Ð

cν E
∨

≡ ∑
k=1

∞

 Q
Ð

cν

k–1 E
∨
= ∑

k=0

∞

  Q
Ð

c
k

ν E
∨
= [ ]E

Ð

 – Q
Ð

cν

–1 E
∨
 . (73) 

 
The function of influence Θ(s–; z, r

⊥
, s) and the 

spatial frequency characteristic Ψ(s–; z, p, s), in fact, 
describe the field of radiation in the layer produced due to 
the processes of multiple scattering of a laser beam 
propagating along the direction s– at its boundary z = H at 
the center of the system of horizontal coordinates x, y. This 
fundamental solution is the kernel of OTO for the problems 
with the following set of source and reflection characteristic 
pairs: 1) E(r

⊥
, s), P(r

⊥
, s, s′); 2) E(r

⊥
, s), P(s, s′);  

3) E(s), P(r
⊥
, s, s′); 4) E(r

⊥
), P(r

⊥
, s, s′); 5) E(r

⊥
),  

P(s, s′); 6) E, P(r
⊥
, s, s′). 

The cases should be noted when other fundamental 
solutions are used, which are particular representations of 
FI Θ and SFC Ψ.  

The function of influence 
 

Θr(z, r⊥
, s) = 

1
2π ⌡⌠

Ω
–

 Θ(s–; z, r
⊥
, s) d s–  

 

and the spatial frequency characteristic  
 

Ψr(z, p, s) = F[Θr] = 
1
2π ⌡⌠

Ω
–

 Ψ(s–; z, p, s) d s–  

 

determined from the boundary problems 
 

{
Ð

K Θr= 0,  Θr ⏐Ã0 
= 0,  Θr ⏐ÃH 

= δ(r
⊥
) ;  

 

{
Ð

L( p) Ψr= 0,  Ψr ⏐Ã0 
= 0,  Ψr ⏐ÃH 

= 1 , 

are kernels of the functionals for the cases when the 
source parameters and the reflection coefficient make the 
following pairs: 7) E(r

⊥
, s), P(r

⊥
, s′); 8) E(r

⊥
, s), P(s′); 

9) E(s), P(r
⊥
, s′); 10) E(r

⊥
), P(r

⊥
, s′); 11) E(r

⊥
), P(s′); 

12) E, P(r
⊥
, s′). 

Using the function of influence  
 

Θz(s
–; z, s) = ⌡⌠

–∞

∞

 Θ(s–; z, r
⊥
, s) d r

⊥
  

 

which is a solution to the problem (
Ð

Kz = 
Ð

Dz – 
Ð

S) for a 

monodirectional wide beam 
 

{
Ð

KzΘz= 0,  Θz ⏐Ã0 
= 0,  Θz ⏐ÃH 

= δ(s – s–) ,  

 

one can derive the functionals for the case of horizontally 
homogeneous sources and reflection 13) E(s), P(s,s′);  
14) E, P(s,s′). 

Using the transmission function, which is not 
corrected for multiple scattering effects 
 

W(z, s) = 
1
2π ⌡⌠

Ω
–

 Θz(s
–; z, s) d s– = 

 

= 
1
2π ⌡⌠

Ω
–

 d s– ⌡⌠
–∞

∞

 Θ(s–; z, r
⊥
, s) d r

⊥
 , 

 

which satisfied the problem for a single isotropic source 
 

{
Ð

KzW = 0,  W ⏐Ã0 
= 0,  W ⏐ÃH 

= 1 ,  

 

one finds the solution for the pair 15) E, P(s′). 
The function of influence Θ(s–; z, r

⊥
, s) is a solution 

to the first boundary–value problem (4), while FI  
ΘR(s–; z, r

⊥
, s) is the solution to the general boundary–

value problem (45) for a horizontally inhomogeneous source 
of the type of a laser beam. 

Functions of influence Θc(s
–; z, r

⊥
, s) and  

Θ
ν
(s–; z, r

⊥
, s) are particular cases of the FI ΘR, these are the 

solutions to problems (11) and (28), respectively, with their 

operators of reflection 
Ð

R = 
Ð

Rc and 
Ð

R = 
Ð

R
ν Functions of 

influence ΘR, Θ
ν
, and Θc describe the radiation field produced 

by a stationary narrow beam with its coordinates x = 0, y = 0, 
z = H, s = s–, they account for the contribution from multiple 
scattering in the medium and contribution from multiple 
reflections from the underlying surface, these reflections 
described by corresponding reflection coefficients of P

ν
 + Pc, 

P
ν
, and Pc. The spatial frequency characteristic is defined as 

the Fourier transform of the function of influence Ψ(s–

; z, p, s) = F[Θ], which is a solution to the first boundary–
value problem for the complex equation of radiation transfer 
(5) and ΨR(s–; z, p, s) = F[ΘR] , Ψv(s

–; z, p, s) = F[Θ
ν
] , 

Ψc(s
–; z, p, s) = F[Θc], which are solutions to the complex 

problems (47), (29), and (12), respectively. 
The exact solutions to the general boundary–value 

problems (1), (8) and (9), i.e. the functionals (10), (22), (27), 
(39), (44), (66) and (70) are essentially different presentations 
of the optical transfer operator in terms of the functions of 
influence, while the functionals (10), (25), (27), (42), (46), 
(68), and (72) are essentially different representations of the 
OTO in Fourier transforms in terms of spatial frequency 
characteristics. 

Functionals (16), (33), (50), (56), and (62) yield 
different representations of the function of influence for the 
general boundary–value problem, while functionals (19), (36), 
(52), (58), and (64) describe corresponding spatial frequency 
characteristics. Meanwhile functions of influence (16), (33), 
and (50), being the exact solutions to the problem for the case 
with reflecting bottom, are defined in terms of FI  
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Θ(s–, z, r
⊥
, s), which is a solution to the problem for the 

nonreflecting boundaries. Similarly, spatial frequency 
characteristics (19), (36), and (52) are the exact solutions 
to the complex equation of radiation transfer in a layer 
with reflecting bottom and are explicitly expressed in 
terms of the SFC Ψ(s-, z, r

⊥
, s), which is a solution to 

the problem with nonreflecting boundaries. 
The Neumann series (23) and(40) describe the 

"scenario" at the underlying surface in terms of FI, while 
(26) and (42) yield its Fourier transform in terms of the 
SFC. The optical transfer operators in the terms of linear 
functionals (10), (22), (25), (27), (39), (42), (44), (46), 
(66), (68), (70), and (72) describe the transfer of the 
"scenario" through a turbid layer and may be employed to 
solve the problems on radiative correction at remote 
sensing of the underlying surface from any height (both 
within the layer and outside it) and along any direction. 

In this paper we have omitted cumbersome 
nontrivial transformations and only present original final 
results within the framework of the theory of the optical 
transfer operator which is based on the kinetic equations 
of radiation transfer in turbid media. Instead of solving 
the initial problems (1), (8), and (9) it is sufficient to 
define the FI Θ or the SFC Ψ, and then to compute the 
functionals using relevant approximation. 
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