RECURSIVE FILTRATION IN APPLICATION TO CALCULATION OF COORDINATES OF A SOURCE OF OPTICAL RADIATION BY DIFFERENTIAL RANGING METHOD

O.I. Aldoshina, A.N. Yeremenko, and A.V. Fabrikov
All-Russia Scientific Research Institute of Optophysical Measurements, Gosstandart of Russia, Moscow
Received March 6, 1994

In this paper we analyze the algorithm for recursive estimation of the coordinates of a point isotropically emitting pulsed source from data of remote observations from space. We present computational programs which are used for calculating source coordinates based on the Kalman and Potter techniques.

In Ref. 1 one finds the formulated problem and the proposed differential ranging technique to determine coordinates of a point pulsed source of optical radiation from data of remote observations from space by a network "Navstar" satellite system. ${ }^{2}$ An algorithm is also proposed in Ref. 1 to solve this problem directly, by inverting the product matrix $G^{\mathrm{T}}\left(\Theta_{0}\right) G\left(\Theta_{0}\right)$ that appears in the linearized equation relating the source coordinates to observational data
$\tilde{v}=G\left(\Theta_{0}\right) \widetilde{\Theta}+\boldsymbol{N}$
after the latter is multiplied on the left by the transposed matrix $G^{\mathrm{T}}\left(\Theta_{0}\right)$. We assumed the following notations for Eq. (1):
$\widetilde{\Theta}=\Theta-\Theta_{0} ; \quad \tilde{\mathbf{v}}=\mathrm{t}-\boldsymbol{L}\left(\Theta_{0}\right) ; \quad \boldsymbol{\Theta}=\left[x, y, z, T_{0}\right]^{\mathrm{T}} ;$ $v=\left[v_{12}, v_{13}, \ldots, v_{1 n}\right]^{\mathrm{T}} ; x, y, z$ are the coordinates of the source; T_{0} is the systematic error of measured signal delays; $\mathrm{t}_{i j}$ are differences between times at which the signal reaches different space vehicles (SVs) or delays; Θ_{0} is the nominal value of the $\boldsymbol{\Theta}$ vector; \boldsymbol{N} is the column-vector of random measurement errors with a Gaussian distribution with zero average and a variance $\sigma^{2} ; \boldsymbol{L}\left(\Theta_{0}\right)$ is the column-vector with elements $\quad r_{j}-r_{1}-c T_{0} \quad(j=2.3, \ldots, n)$, calculated for nominal values $x, y, z, T_{0} ; r_{j}$ is the distance from the source to the j th $\mathrm{SV} ; c$ is the speed of light. The matrix $\mathrm{G}\left(\Theta_{0}\right)$ has the form
$G\left(\Theta_{0}\right)=-\left[G_{1}\left(\Theta_{0}\right), G_{2}\left(\Theta_{0}\right), \ldots, G_{n-1}\left(\Theta_{0}\right)\right]^{\mathrm{T}}$,
where

$$
\left.\begin{array}{l}
G_{j}\left(\Theta_{0}\right)=\left[\alpha_{j+1}, \beta_{j+1}, \gamma_{j+1}, 1\right] \tag{3}\\
\alpha_{j}=\left(x_{j}-x_{0}\right) / r_{j 0}-\left(x_{1}-x_{0}\right) / r_{10} \\
\beta_{j}=\left(y_{j}-y_{0}\right) / r_{j 0}-\left(y_{1}-y_{0}\right) / r_{10} \\
\gamma_{j}=\left(z_{j}-z_{0}\right) / r_{j 0}-\left(z_{1}-z_{0}\right) / r_{10} ;
\end{array}\right\}
$$

$r_{i 0}(i=1,2, \ldots, n)$ are the values of r_{i}, calculated for the nominal coordinates of the source x, y, z. Following the direct technique the vector $\widetilde{\Theta}$ and covariation matrices of the estimation errors P are estimated by the following formulas:

$$
\left.\begin{array}{l}
\hat{\tilde{\Theta}}=\left(G^{\mathrm{T}}\left(\Theta_{0}\right) G\left(\Theta_{0}\right)\right)^{-1} G^{\mathrm{T}}\left(\Theta_{0}\right) v \tag{4}\\
\hat{P}\left(\widetilde{\Theta}_{0}\right)=\left(G^{\mathrm{T}}\left(\Theta_{0}\right) G\left(\Theta_{0}\right)\right)^{-1} \sigma^{2}
\end{array}\right\}
$$

However, the direct technique becomes cumbersome when one tries to use expressions (4) for large n. It is more convenient to employ one of the recursive techniques, in which the estimation is a step-by-step procedure which follows the access of data from different SVs, so that the new improved estimate is presented as a linear combination of the preceding estimate and a new one. Below we consider two approaches to the task of recursive estimation of the coordinates of a point pulsed source of optical radiation from satellite measurement data. Recursive techniques are then compared to a direct one. The techniques considered are based on the Kalman algorithm and on its modification - the algorithm of square root of the matrix of covariation of estimation errors, which is also called the Potter algorithm. ${ }^{3}$

If the vector of data \tilde{v} is related to the vector of parameters $\widetilde{\Theta}$ by equation (1), the Kalman technique ${ }^{3-4}$ follows the procedure according to equations
$\hat{\widetilde{\Theta}}=\overline{\widetilde{\Theta}}+K(\tilde{\mathrm{v}}-G \overline{\widetilde{\Theta}}) ; \hat{P}=\bar{P}-K G \bar{P}$,
where $\widetilde{\Theta}$ and \bar{P} are the a priori estimates and the a priori matrix of covariation; K and D are defined by the equations
$K=\bar{P} G^{\mathrm{T}} D^{-1}, \quad D=G \bar{P} G^{\mathrm{T}}+I \sigma^{2}$.
Input parameters to the recursive filter are the initial values $\widetilde{\Theta}_{0}=0$ and $P_{0}=\left(G^{\mathrm{T}}\left(\Theta_{0}\right) G\left(\Theta_{0}\right)\right)^{-1} \sigma^{2}$, the data z_{j} and the set of coefficients \boldsymbol{A}_{j}, where z_{j} is the j th element of the column-vector \tilde{v}, i.e. is a scalar, and \boldsymbol{A}_{j} is the j th row of the matrix $G\left(\Theta_{0}\right)$ (the row-vector). Computations follow the scheme:
$\boldsymbol{l}_{j}=P_{j} \boldsymbol{A}_{j}^{\mathrm{T}}, \quad r_{j}=\boldsymbol{A}_{j} \boldsymbol{l}_{j}+1-$ covariation of the forecasted residual;
$\boldsymbol{K}_{j}=\boldsymbol{l}_{j} / r_{j}-$ vector of gain factors;
$\tilde{\mathbf{v}}_{j}=z_{j}-\boldsymbol{A}_{j} \widetilde{\Theta}_{j}-$ the forecasted residual;
$\widetilde{\boldsymbol{\Theta}}_{j+1}=\widetilde{\boldsymbol{\Theta}}_{j}+\boldsymbol{K}_{j} \tilde{\mathrm{v}}_{\mathrm{j}}-$ new estimate of vector $\tilde{\boldsymbol{\Theta}} ;$
$\bar{P}_{j+1}=\bar{P}_{j}-\boldsymbol{K}_{j} \boldsymbol{l}_{j}^{\mathrm{T}}-$ new covariation;
$\overline{\boldsymbol{l}}_{j}=\bar{P}_{j+1} \boldsymbol{A}_{j}^{\mathrm{T}}, P_{j+1}=\left(\bar{P}_{j+1}-\overline{\boldsymbol{l}}_{j} \boldsymbol{K}_{j}^{\mathrm{T}}\right)+\boldsymbol{K}_{j} \boldsymbol{K}_{j}^{\mathrm{T}}-$ the stabilized new covariation, where $\widetilde{\Theta}_{j}$ and P_{j} are the estimates of the vector Θ and the matrix of covariation of estimates retrieved after processing j observations.

Table I. Source coordinates: $x=2879.592 ; y=2249.784$; $z=5218.817$.

As to the square-root algorithm, the value used for its input filter is the a priori value of the square root of P_{0}, instead of the a priori value P_{0} of the matrix of covariation P. In our case this a square root is equal to $S_{0}=G^{-\mathrm{T}}\left(\Theta_{0}\right) \sigma$, where $G\left(\Theta_{0}\right)$ is calculated by formulas (2) and (3) for $n=5$. Calculations follow the scheme:
$\boldsymbol{l}_{j}^{\mathrm{T}}=\boldsymbol{A}_{j} S_{j}, \quad r_{j}=1 /\left(\boldsymbol{l}_{j}^{\mathrm{T}} \boldsymbol{l}_{j}+1\right)-$ the inverse value of the covariance of the forecasted residual;
$\boldsymbol{K}_{j}=S_{j} \boldsymbol{l}_{j}-$ vector of gain factors;
$\tilde{t}_{j}=z_{j}-\boldsymbol{A}_{j} \widetilde{\Theta}_{j}-$ the forecasted residual;
$\widetilde{\boldsymbol{\Theta}}_{j+1}=\widetilde{\boldsymbol{\Theta}}_{j}+\boldsymbol{K}_{j}\left(\tilde{v}_{j} r_{j}\right)-$ new estimate of vector $\widetilde{\boldsymbol{\Theta}} ;$
$\gamma_{j}=r_{j} /\left(1+\sqrt{r_{j}}\right), \quad S_{j+1}=S_{j}-\left(\gamma_{j} \boldsymbol{K}_{j}\right) l_{j}^{\mathrm{T}} \quad-$ new \quad square root of covariation;
$P_{j+1}=S_{j+1} S_{j+1}^{\mathrm{T}}-$ covariation.
To verify the efficiency of the described algorithms a numerical experiment was performed. The initial data and the observational data for it are presented in Table I. The direct technique was employed for $n=5$, and the recursive techniques were used for $n=14$. Computational results are presented in Table II.

Table II.

Technique	Calculated (estimated) parameters $x, y, z, c T_{0}$ and diagonal elements of the matrix of covariation (in brackets)
Direct	Experiment 1
	2881.296 (0.000) 2251.138 (0.001)
	5222.083 (0.007) -0.166 (0.003)
Kalman	2880.445 (0.000) 2250.237 (0.001)
	5221.257 (0.007) 0.300 (0.003)
Potter	2879.842 (0.015) 2249.976 (0.032)
	5220.137 (0.084) 0.598 (0.053)
Direct	Experiment 2
	2881.288 (0.000) 2251.155 (0.001)
	5222.106 (0.007) -0.169 (0.003)
Kalman	2880.336 (0.000) 2250.276 (0.001)
	5221.483 (0.007) 0.300 (0.003)
Potter	2879.889 (0.016) 2249.897 (0.032)
	5220.439 (0.084) 0.598 (0.052)
	Experiment 3
Direct	2881.286 (0.000) 2251.137 (0.001)
	5222.056 (0.007) -0.140 (0.003)
Kalman	2880.427 (0.000) 2250.789 (0.001)
	5221.875 (0.007) 0.300 (0.003)
Potter	2879.576 (0.016) 2249.693 (0.033)
	5220.846 (0.082) 0.598 (0.052)

Appendicies present the PASCAL computational programs for the Kalman and Potter techniques.

APPENDIX A: KALMAN PROCEDURE

PROCEDURE Kalman ;

VAR
TYPE
$\operatorname{VECTOR}=\operatorname{ARRAY}[1 . .10]$ OF REAL;
VAR
S, Sigma, Delta
: REAL ;
V
BEGIN
Sigma : $=1$.;
Delta : $=z$;
: VECTOR ;
$\{z-$ input $\}$
FOR i : = 1 TO N DO BEGIN
$\mathrm{V}[\mathrm{i}]:=0$.;
FOR j : = 1 TO N DO

$$
\mathrm{V}[\mathrm{i}]:=\mathrm{V}[\mathrm{i}]+\mathrm{P}[\mathrm{i}, \mathrm{j}] * \mathrm{~A}[\mathrm{j}] ; \quad\{\mathrm{P}, \mathrm{~A}-
$$

input $\}$

$$
\text { Delta }:=\text { Delta }-\mathrm{A}[\mathrm{i}] * \mathrm{X}[\mathrm{i}] ; \quad\{X-\text { input }\}
$$

Sigma $:=$ Sigma $+A[i] * V[i] ;$
END ;
Sigma : = 1. /Sigma;
FOR i : = 1 TO N DO BEGIN
$\mathrm{K}[\mathrm{i}]:=\mathrm{V}[\mathrm{i}] *$ Sigma ; $\quad\{\mathrm{K}-$ output $\}$
$\mathrm{X}[\mathrm{i}]:=\mathrm{X}[\mathrm{i}]+\mathrm{K}[\mathrm{i}] *$ Delta ;
\{X output estimate\}
FOR $j:=1$ TO N DO BEGIN

```
            P[i, j]:= P[i,j] - K[i]*V[ j];
            P[j,i]:= P[i,j];
            END ;
    END ;
    FOR i := 1 TO N DO BEGIN
    V[i]:=0.;
        FOR j := 1 TO N DO
            V[i]:= V[i] + P[i,j]*A[ j] ;
    END
    FOR j := 1 TO N DO
        FOR i := 1 TO j DO BEGIN
        S:=0.5*(P[i,j]-V[i]*K[j] + P[i,j] -
V[ j]*K[i]);
            P[i,j]:=S + K[i]*K[ j];{P - output }
            P[j,i]:= P[i,j];
        END ;
        FOR i := 1 TO N DO
        FOR j := 1 TO N DO BEGIN
            PklOut [i, j] : = Pkl [i, j] ;
        END ;
        Xout := X0 + X[1]; {X - output
coordinate}
    Yout:= Y0 + X[2]; {Y - output coordinate}
    Zout ; = Z0 + X[3] ; {Z - output coordinate}
        END ;
(* ....... END of the Kalman procedure

\section*{APPENDIX B: POTTER PROCEDURE}

\section*{PROCEDURE Potter ;}
``` TYPE
\(\operatorname{VECTOR}=\operatorname{ARRAY}[1\).. 10] of REAL;
```


## VAR

```
Sigma, Delta, Gamma, Alfa V :
ded;
VECTOR;
VAR i, j: INTEGER ;
BEGIN
Sigma : = 1. ;
Delta : = Z ;
\{z - input \(\}\)
 V[i]:=0.;
 FOR j:=1 TO N DO
 V[i]:= V[i] + S[j, i]*A[j] ; {S, A -
input}
 Delta : = Delta - A[i]*X[i]; {X - input}
 Sigma : = Sigma : + V[i]*V[i] ;
 END
 Sigma : = 1./Sigma ;
 Delta : = Delta*Sigma ;
 Gamma := Sigma/(1. + SQRT(Sigma)) ;
 Alfa : = 0;
 FOR i : = 1 TO N DO
 Alfa := Alfa + S[i, j]*V[j] ;
 X[i]:= X[i] + Alfa*Delta ; {X - output }
 Alfa := Alfa*Gamma ;
 FOR j ; =1 TO N DO
 S[i, j]:= S[i, j] - Alfa*V[j]; {X -
output estimate}
 Xout:= X0 + X[1]; (X - output coordinate)
 Yout:= Y0 + X[2]; (Y - output coordinate)
 Zout : = Z0 + X[3] ; (Z - output coordinate)
END ; { **** END of the Potter procedure *** }
```

FOR i : = 1 TO N DO BEGIN

## REFERENCES

1. O.I. Aldoshina, A.V. Fabrikov, and V.A. Fabrikov, in: Collected Book of Scientific Works, Pedagogical Institute, Tula (1993), pp. 63-80
2. R.J. Milleken, and C.J. Zoller, Navigation 25, No 2, 95-106 (1978).
3. G.J. Bierman, Factorization Methods for Discrete Sequential Estimation. No. 4 (Academic Press, 1977), 241 pp.
4. M.S.Yarlykov, Statistical Theory of Radionavigation (Radio i Svyaz', Moscow, 1985), 344 pp.
