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This paper deals with the problem of statistical estimation that arises in 
calculation of coordinates of a source from the data obtained with a satellite system. 
Calculation formulas involve time lags of signal arrival at reference points of the 
system. These time lags are evaluated from pairwise comparison between the versions 
(realizations) of signals recorded at reference points using the first moment of the 
impulse transfer characteristic of an adaptive filter which transforms one signal 
version into another provided that the error of transformation is at its minimum. 

 
1.The problem of determination of the three–

dimensional radius vector r of optical source from signals 
measured at five different points (called reference points) of 
space with the known radius vectors ri (i = 1, ..., 5) is 

considered. Measurements can be carried out, for example, 
with the use of spacecrafts (satellite constellation) being 
part of satellite system of global orientation.1 

Time lags between signal arrival at reference points 
τj1, j = 2, 3, 4, 5 and covariance matrix of errors in their 

determination ξj1 are the initial data for calculation of the 

coordinates of a source 
 

R = [rkj], rkj = E{(ξk1
 – T) (ξj1 – T)*}, j, k = 2, 3, 4, 5 . 

 
Here ξj1 are the Gaussian random variables with the mean 

("synchronization shift") T = E{ξj1}; τj1 = tj – t
1
; tj and t

1
 

are the instants of signal arrival at the points j and 1, 
respectively; ξj1 (j = 2, 3, 4, 5) are the errors in estimating 

the lags between the signal "copies" recorded at different 
points of space, which are weakly disturbed and possibly 
scaled up or down. The systematic error associated with the 
constant component T in the random variables ξj1 may be 

due to, for example, choice of one of these copies, say, the 
first, as the initial copy, with which the others are 
compared. The random components of errors are considered 
to be Gaussian because they are largely due to the intrinsic 
noise of a measuring device and filter (estimator), generally 
approximated by the Gaussian processes, rather than due to 
the effect of a signal propagation medium. 

Calculations are carried out with the use of the 
equations 

 
⏐r – rj⏐ – ⏐r – r

1
⏐ = c(τj1 + ξj1) , j = 2, . . . , 5 , (1) 

 
following from the geometric consideration of the problem. 
In these equations 

 

⏐r – rj⏐ = (x – xj)
2 + (y – yj)

2 + (z – zj)
2 

 
is the modulus of the vector r – rj or the distance from the 

radiating source to the jth reference point; c is the light 
velocity, which is taken to be equal to unity by 
corresponding scaling; E{ξj1} is the mathematical 

expectation (mean value) of the random variable ξ. 
Introducing the designations 
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we may rewrite Eq. (1) in the form 
 

υ = L(θ) + N , (3) 
 

where υ is the observed Gaussian random four–dimensional 
vector with the mean value L(θ) and covariance matrix R; θ 
is the desired vector–parameter 
 

θ = [ ]rT  . (4) 

 
2. The solution of Eqs. (2) and (3) is the well–known 

problem of statistical estimation.2 It is necessary to obtain 
in general the m–dimensional vector–parameter θ being 
optimal for the mean square error from the observed n–
dimensional random Gaussian vector υ with the probability 
density depending on θ 
 

p(υ⏐θ)=
1

(2 π)n/2
 ⏐R⏐1/2exp { }–

1
2 (R–1(υ– L(θ)), (υ–L(θ)))

,  (5) 

where ⏐R⏐ is the determinant of the matrix R and 
(ξ, η) ≡ {ξ, η*} is the scalar product of the vectors ξ and η 
in the Hilbert space of random variables (asterisk denotes 
Hermitian conjugation). As applied to satellite 
radionavigation, this problem was considered in Ref. 3. 

For sufficiently smooth transform L(θ), having 
derivatives of any order, the minimum Rao–Cramer matrix 
(minimum second moments of the estimation error 
 

P(θ) = E
θ 
{(θÐ – θ) (θ

Ð
 – θ)*} 
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for fixed θ from the class of all possible linear estimates of 

θ
Ð
) on account of Eq. (5) and the equality following from 

this equation 
 

(∇
θ 
log p(υ⏐θ))* = G*(θ) R–1 (υ – L(θ)) 

 
is determined by the expression3,4 
 

E{(∇
θ 
log p(υ⏐θ))* (∇

θ 
log p(υ⏐θ))} = G*(θ) R–1 G(θ) , 

 

where R
 
= E[(υ – L(θ)) (υ – L(θ))*], and G(θ) is the 

gradient (n × m matrix) of the vector function L(θ) 
 
G(θ) = ∇

θ 
L(θ) . (6) 

 
Since L(θ) is nonlinear transform, it is expedient "to 

localize" the problem taking a certain "nominal" value of θ
0
 

and estimating small perturbation of this quantity. 
Assuming that 
 
L(θ) = L(θ

0
) + G(θ

0
) (θ – θ

0
) 

 
and introducing the new variables  
 

υ∼ = υ – L(θ) ,  θ
∼
 = θ – θ

0
 , 

 

we linearize the problem reducing Eq. (3) to the form 
 

υ = G(θ
0
) θ
∼
 + N . (7) 

 
For the Gaussian vector N the estimate of the 

maximum likelihood (EML), which maximizes p(υ ⏐ θ) for 
θ at any υ and satisfies the equation 
 
∇
θ 
log p(υ⏐θ) = 0 , 

 
is given by the formula  
 

θ
Ð
 = θ

0
 + (G*(θ

0
) R–1 G(θ

0
))–1

 G*(θ
0
) R–1 (υ – L(θ

0
)). (8) 

 
For Gaussian signals the EML coincides with the estimate 
by the least square technique.5 This is an effective unbiased 
estimate of the vector–parameter θ. The error covariance 
matrix for this estimate is the minimum Rao–Cramer matrix 
and is equal to 
 

P(θ) = (G*(θ
0
) R–1 G(θ

0
))–1 . (9) 

 

If the correlation between ξj1, j
 
= 2, 3, 4, 5 can be neglected 

and the variances Dξj1 = σ2 are equal, we will have 

R–1 =
 
I/σ2 , 

 
where I is the unit n × n matrix. Equations (8) and (9) are 
simplified for this case and take the form 
 

θ
Ð
 = θ

0
 + (G*(θ

0
) G(θ

0
))–1

 G*(θ
0
) (υ – L(θ

0
)) , (10) 

 

P(θ) = (G*(θ
0
) G(θ

0
))–1

 σ2 . (11) 

 

The matrix G(θ
0
) remains to be determined. 

Introducing the designations 
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we derive from Eqs. (6) and (2) 
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 , (12) 

 
where  
 

⎭
⎬
⎫αj = (xj – x

0
)/aj – (x

1
 – x

0
)/a

1 
,

βj = (yj – y
0
)/aj – (y

1
 – y

0
)/a

1 
,

γj = (zj – z
0
)/aj – (z

1
 – z

0
)/a

1 
,

 (13) 

aj ≡ ⏐rj – r
0
⏐ ,  j = 1, ..., 5 . 

 

Substituting θ
Ð
 for θ

0
, the calculation from these 

equations can be repeated to obtain a better estimate of θ. 
The iteration process can be continued till θ becomes so 
small that the following iterations give no significant 
improvement in the results.5 The starting value of θ

0
 is 

determined by the solution of the system of four equations 
 

⏐r – rj⏐ – ⏐r – r
1
⏐ = τj1 + T ,  j = 2, 3, 4, 5 , (14) 

 

with four unknowns x, y, z, and T. Equations (14) are 
derived from Eq. (1) (for c = 1) ignoring the small 
quantities ξj1 – T. 

3. The values τj1 and σ2 which enter in the 

calculation relations for θ
Ð
 and P(θ) are determined from 

the signals measured at the reference points. In radar 
technique with the known shape of recorded signal its 
arrival time τ is determined as the time t

max
 at which the 

signal envelope at the output of a square–law detector, 
connected to the output of a matched filter,6 reaches its 
maximum. Therefore, τ = t

max
 – T′, where T′ is the time 

lag due to the filter. In the examined case of optical 
signal of unknown shape another technique based on a 
comparison of two versions (realizations) of recorded 
signal is more convenient. These signal versions are fed by 
pairs in different combinations (predelayed at a certain 
"nominal" time Tj1) into the input and output of an 

adaptive digital filter with tunable impulse transfer 
characteristic hi(n), i = 0, 1, ..., N –1 of finite duration 

N (see Refs. 7 and 8). The shapes of this characteristic 
are recorded for each pair at different time intervals of 
signal recording period. 

The operation of the filter is described by the 
convolution equation  

 

d
Ð

(n) = ∑
i=0

N–1

 hi(n) x(n – i) = wN*(n) xN(n) , 

 

where x(n) is the signal fed into the filter input, d
^
(n) is the 

filter output signal, 
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wN*(n) = [h
0
(n), ..., hN–1

(n)] , 

xN*(n) = [x(n), ..., x(n – N + 1)] . 
 

The optimal filter characteristic hi(n) for minimum 

square error 
 

ε(n) ≡ E[⏐d(n) – d
Ð

(n)⏐2] 
 
is determined by the system of standard equations which are 
written in the matrix form as follows8: 
 
RNN wn = PN , 

 
where RNN = E{xN(n) xN*(n)} is the correlation matrix for 

the input signal, PN = E{d(n) xN(n)} is the cross–

correlation vector. Having determined the form of the 
function hi(n) versus i for the fixed n for the filter which 

transforms the ith version of the signal to the jth version, 
the τji is calculated by the formala 

 
τji = Tji + ηji , (15) 

 
where ηji is the center of gravity (the first moment) of the 

function hm(n), and Tji is the nominal (guessed) value of 

the time lag. The variance σ2 is determined by the 
expression 
 

σ2(n) = 2 σ∼2 / ⏐x′(n)⏐2 , (16) 
 
where σ2(n) is the variance of the measurement errors, x′(n) 
is the derivative of the signal x(t) at the instant t = nt

0
, 

and t
0
 is the sample step. 

The formulas for τji and σ2 estimation are easy 

interpreted when analyzing the filtration process in 
continuos time. Allowing for small difference between 
recorded versions of signal and closeness of the impulse 
transfer characteristic of the filter h(t) to the Dirac delta 
function, we may use the approximation formula for the 
inversion of the operation of convolution performed by the 
filter9 
 

x(t) ≈ 
1
m

0
 [ ]d

Ð

(t + η) – 
ζ 

2

2  d
Ð

′′(t + η) + ...  , (17) 

 

where η = m
1 
/m

0
 ,  ζ 

2 = m
2 
/m

0
 – η2 , m

0
 ≈ 1, m

1
 and m

2
 

are the moments of the function mn = ⌡⌠
–∞

∞

 
 t 

n h(t) d t of the 

zeroth, first, and second orders. The parameter σ2 can be 
found as the variance of the random variable δ in the equation 
 

f
0
(t) + ε

1
(t) ≈ f

0
(t + δ) + ε

2
(t) ≈ f

0
(t) + δ f

0
'(t) + ε

2
(t) , 

 
which is derived from Eq. (17) when we ignore the small 
terms containing the factors ζ 

2 in the first and higher 
powers by substituting 
 

x(t) = f
0
(t) + ε

1
(t) , d

Ð

(t) ≈ d(t) = f
0
(t + δ) + ε

2
(t) . 

 

Here ε
1
(t) and ε

2
(t) are the deviations of the recorded 

versions from the true shape of transmitted signal f
0
(t). 

They are considered to be independent random variables with 

zero mean and variance Dε
1
 = D ε

Ð

2
 = σ

∼2. 

4. The systematic error T is small as compared with the 

time lags τi1 (T n τi1 for any i). Therefore, as the initial 

estimate of θ by Eq. (14), the nominal value of T
0
 may be set 

zero. Then from Eq. (14) we derive the system of three linear 
algebraic equations 
 
ai x + bi y + ci z = di ,  i = 3, 4, 5 , (18) 

 
to calculate the three other components of the vector θ

0
. 

The coefficients of these equations  
 

ai = xi – x
1
 – 

τi1
τ
21

 (x
2
 – x

1
) , 

 

bi = yi – y
1
 – 

τi1
τ
21

 (y
2
 – y

1
) , 

 

ci = zi – z
1
 – 

τi1
τ
21

 (z
2
 – z

1
) , 

 

di = 
1
2 ⎣
⎡

⎦
⎤ρi

2 – ρ
1
2 – τi1

2  – 
τi1
τ
21

 (ρ
2
2 – ρ

1
2 – τ

21
2 )  

 
for the known parameters xk, yk, zk, and ρk

2 = xk
2 + yk

2 + zk
2 are 

determined from the experimentally measured values of τk1, 
k = 2, 3, 4, 5. 

The practically important problem of optimal 
estimation of the coordinates of isotropic source of pulsed 
optical radiation from the data of satellite observations 
has been considered. The calculation relations have been 
given when the signal is recorded at five spaced points. 
The three coordinates x, y, and z of the source and the 
systematic error T in estimating the time lags of signal 
arrival at reference points have been determined. The 
problem is solved by the direct method of inversion of the 
nonsingular 4 × 4 data matrix with simultaneous finding 
of the matrix of errors in estimating the covariance P, 
which is the minimum Rao–Cramer matrix. In the case of 
data surplus, when the number of reference points is 
larger than 5, the direct method of estimating the 
parameters x, y, z, and T and the covariance matrix P 
can be substituted by recursion using the Calman filter, 
for example. 

The time lags of signal arrival at different reference 
points is proposed to estimate with the use of the 
adaptive digital filter operating in the regime of 
identification of unknown system, when one version of 
the signal is fed at its input and its output is compared 
with the another version. Time lag can be estimated from 
the position of signal maximum or of the midpoint of the 
impulse response characteristic of the filter system. The 
method proposed is analogous to the well–known 
technique for estimation of time lags from the position of 
maxmum of the cross–correlation function for signals 
being compared,10 but has the advantage that the peak of 
the corresponding curve is more sharply pronounced. 
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