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A regional mathematical model of pollution transport in the atmosphere is 
described at length.  The model is based on the equation of conservative impurity 
transport in a turbulent medium.  The schemes of parametrization of humid washout, 
sedimentation, and self–induced vertical lift are considered.  The model is constructed 
numerically using the method of separation for physical processes.  At the stage of 
advection the scheme that does not increase the total variation is used.  Advantages of 
the model allow its use in the problems of regional ecology. 

 

Mathematical models which describe propagation of 
gaseous and aerosol impurities in the atmosphere have 
found a wide application to the solution of the problems 
of atmospheric physics, environmental protection, and 
forecasting the level of atmospheric air pollution.  The 
semiempirical equation of turbulent diffusion, as a rule, 
provides the basis for these models.  The overwhelming 
majority of the mathematical models of impurity 
transport are kinematic models since the components of 
the wind velocity vector and the other meteorological 
characteristics, which are the parameters of transport 
models, are determined from the measurement results or 
are calculated using an atmospheric prognostic model.  In 
view of the fact that most anthropogenic impurities are 
concentrated in the lower two–kilometer layer of the 
atmosphere the mathematical models of transport of 
impurities by air are generally constructed for the 
boundary layer of the atmosphere.  However, when 
aerosols that absorb short–wave solar radiation very 
intensively (smoke, dust, soot) are discharged into the 
atmosphere, the mathematical models of transport must 
describe physical processes occurring over the entire 
depths of the troposphere and lower stratosphere.  This 
can be caused by the tendency of strongly absorbing 
aerosol to self–induced vertical lift.1 

This paper describes a three–dimensional 
nonstationary regional model of impurity transport in the 
atmosphere.  It represents one block of the ecological–
economic model of the region.  Impurities are assumed to 
be multicomponent and chemically inert. 

Formulation of the problem.  The processes of 
propagation of pollutants in the atmosphere are described 
by the transport equation with allowance for turbulent 
exchange, sedimentation, humid washout, and exchange 
processes between the atmosphere and the underlying 
surface 
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where c = {ci (i = 1, N )} is the vector of normalized 

concentration of an impurity;  ci is the normalized 

concentration of one of its components;  U = (u, v, w) is 
the vector of wind velocity in the coordinate system (x, 
y, p);  μ and ν are the horizontal and vertical coefficients 
of turbulent diffusion;  g is the acceleration of free fall;  

ρ is the air density;  Ic and Ic
* are the vector functions, 

which take into account aerosol generation and sink due 
to transformation processes; and, f is the vector–function 
of the source.  The subscript s denotes the operators of 
gradient and divergence in horizontal directions. 

The components of the velocity vector, the 
coefficients of turbulent exchange, and the air density are 
the input parameters of the model.  They are assigned 
based on the measurement results or are calculated using 
any prognostic model. 

The tropopause, being a thick barrier layer, can be 
considered as the upper boundary for the transport model 
for majority of natural and anthropogenetic aerosols.  
Then the corresponding boundary condition is written as2 

 

g ρ ν 

∂ ci

∂ p  
p = p

ò 

= kci( ci  
p=p

ò

 – c*i),   i = 1, N , (2)  

 

where kci (i = 1, N ) are the exchange coefficients;  c i* 

is the concentration of the ith impurity in the 
stratosphere;  p

ò
 is the isobaric level that is conditionally 

assumed to be a tropopause level. 
The expression (2), due to weak convective air flow 

near the tropopause, is sufficiently good approximation 
for an impurity flux to the stratosphere. 

The atmosphere –– underlying surface interaction in 
the formalized representation can be described by the 
formula3 
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where csi is the ith impurity concentration above the 

underlying surface which provides a balance in an 
exchange process between the underlying surface and the 
atmosphere;  ci⏐p=ps

 is the ith impurity concentration in 

air over the underlying surface;  ksi are the turbulent 

exchange coefficients which are the functions of a soil 
type, vegetation cover, and temperature;  and, Qsi is the 

source of the ith impurity located on the underlying 
surface. 

The initial conditions for unambiguous solution of 
Eq. (1) are formalized as follows: 
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c (x, y, p, 0) = c
0
 (x, y, p), (4) 

 

where c
0
 is the given vector –function. 

Method of solution.  The impurity transport equation 
(1) with the given boundary [Eqs. (2) and (3)] and initial 
[Eq. (4)] conditions can be solved using numerical methods, if 
the components of the wind velocity vector, the turbulent 
exchange coefficients, and the aerosol sinks and sources are 
known. 

The problem of impurity transport in the atmosphere is 
classified among the problems centered around the solution of 
the hyperbolic–type equations.  This solution becomes 
discontinuous at a certain moment of time (or it can be smooth 
but with large spatial gradient).  The so–called monotonic 
numerical schemes4 are used to solve the equations which 
describe evolution of positive functions.  However, there are 
no monotonic schemes with the spatial approximation order 
higher than the first order.  Therefore, such schemes possess 
strong diffusion, the unknown function profiles are too broad, 
and the accurate solutions can be obtained only using an 
extremely fine–structure grids. 

We can improve the accuracy without loss of rigourous 
theoretical substantiation replacing the condition of monotony 
by the condition of nonincreasing total variation.5  The total 
variation of numerical solution denoted as TV(cn) is defined as 
follows: 
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where n is the serial number of a time step, and i is the 
serial number of a grid node. 

Therefore, the numerical scheme is the TVD (total 
variation diminishing) scheme, when 
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The TVD schemes do not result in formation of 

nonphysical oscillations and enable one to attain the second 
(and higher) order of accuracy in the regions of smooth 
variations of the solution. 

For the one–dimensional equation  
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the TVD scheme can have the form 
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n  is given by the analogous expression.  The function 

ϕ(ri) is called a finitary function.  Its parameter ri is found 

from the gradient relation 
 

ri = (ci – ci – 1
) / (ci + 1

 – ci ).  
 

The finitary function ϕ(ri) is chosen so that scheme (7) 

could satisfy conditions (6).  In Ref. 6 the author offers the 
following type of finitary function: 

 

ϕ(r) = 
⎩⎪
⎨
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min(2, r) , for   r > 1 ,
min(2 r, 1) , for   0 < r ≤ 1 ,
0 , for   r ≤ 0.

 (8) 

 

The scheme (7) is single–step (in contrast with, for 
example, flux correction).  In this case the finitary function 
has a sufficiently simple structure that makes the numerical 
scheme efficient. 

Equation (1) is solved by the method of separation for 
physical processes.  The equation of advection, the equation of 
turbulent diffusion, and the equation which describes 
transformation processes are solved at the first, second, and 
third stages, respectively. 

The numerical TVD scheme is used at the stage of 
advection, and an implicit one is used at the stage of turbulent 
exchange. 

The numerical scheme is realized using a grid with 
horizontal dimensions 40×40 with a 100 km step.  A vertical 
step of the grid changes from 150 m in the boundary layer to 
500 m in the free atmosphere. 

A hydrometeorological regime can be specified either on 
the basis of real information from the available data banks or 
using a regional numerical prognostic model of the 
atmosphere. 

Parametrization of self–induced vertical lift of aerosol.  
The aerosol strongly absorbing solar radiation (smoke, dust, 
soot) is known to be capable of self–induced vertical lift.1  To 
estimate the velocity of vertical self–induced lift, i.e., to take 
into account this mechanism parametrically in the model, one 
must consider a stationary process of volumetric horizontally 
inhomogeneous heat release in a rotating stratified medium.  
Confining our attention to Boussinesq and hydrostatic 
approximations we write down a system of equations of 
hydrodynamics, continuity, and heat influx in the form 
∂Φ
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where l is the Coriolis parameter,  α* is the coefficient of 
thermal expansion,  θ is the potential temperature 

perturbation,  Φ = p′/ρ– is the ratio of the pressure 
perturbation to background density, Γ is the variation of the 
potential temperature gradient from an equilibrium one,  
and Q is the given rate of heat release. 

The system of equations (9) is considered within a 
horizontally infinite atmospheric layer 0 < z < H which is 
uniformly occupied by aerosol strongly absorbing solar 
radiation. 

Let the optical density of turbid air and the solar 
zenith distance allow one to approximate the heat source by 
the expression  

Q = Q
0
 sin 

π
H z, (10) 

 

where Q
0
 is the maximum rate of heat release at z = H/2.  

It should be noted that the form of the approximate 
expression does not affect the final result. 

Consider the limiting case in which horizontal 
variation of heat release is sufficiently slow so that the 
contribution of horizontal turbulent exchange is important 
only near lateral boundaries of the aerosol cloud.  Then the 
initial system of equations takes the form 
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Let us formulate the boundary conditions for solving the 
system of equations (11).  At the lower boundary (z = 0) all 
the velocity components vanish and the temperature is 
assumed to be fixed θ⏐z=0

 = 0.  At the upper boundary  

(z = H) the horizontal velocity components are finite and 
the potential temperature ratio is approximated by the 

expression 
∂θ
∂z Áz=H

 = qθ (q ≥ 0 is the dimensional 

parameter). 
As has already been noted, the problem is to determine 

the vertical velocity which can be found from the solution 
of the equation of continuity 
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z
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When ν = const the first two equations of system (11) 
enable one to obtain the Ekman solution 
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where the parameter a = (f/2ν)1/2.  With allowance for 
relations (13) expression (12) takes the form 
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Here Φ
0
 is the value of the function Φ at z = 0.  To obtain 

an analytical expression that in its explicit form takes into 
account the dependence of vertical velocity on the rate of 
heat release, we carry out the following operations.  The 
equation of heat influx is integrated over altitude.  With 
allowance for the boundary conditions we obtain 
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Integrating the equation of statics over altitude and 
taking into account relation (15), we derive 
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where Φ
H
 is the value of the function Φ at z = H. 

Let us introduce the following designations: 
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Acting by the Laplacian operator on Eq. (10) and 
substituting the resulting expression into Eq. (16) we obtain 
the Helmholtz equation for the vertical velocity 

 

[ Δ(Q
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This equation has been derived for ΔΦ
H
 = 0, in 

particular, when pressure at the upper level z = H is 
constant.  It should be noted that without pressure 
perturbation at z = H in a hydrostatic atmosphere (it is just 
the model that is considered here) the pressure variation at 
the lower boundary is determined by heating of an 
atmospheric column between the levels z = 0 and z = H, 
i.e., by the heat source Q

0
. 

Equation (11) is solved via the Green's function which 
is here the cylindrical McDonald function K

0
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The parameter L* has a meaning of a characteristic 

horizontal scale, and for q ≈ 0 (turbulent heat flux at the 
upper boundary of the layer under study is sufficiently small) 

L
*

 
= NH ( )

DH
3ν  ≈ 150 km. 

 

In this case we assume α* = 3⋅10–3 deg–1,  H = 103 m,   
Γ = 3⋅10–3 deg/m,  l = 10–4 s–1, and ν = 1 m2/s.  Then the 
Brunt–Veisala frequency N = 10–2 s–1, and the parameter 
A ≈ 2.1.  If the problem is two–dimensional (∂/∂x ≈ 0) and 
heat release is localized within the region ⏐y⏐ ≤ y

0
, then 
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The vertical velocity associated with the source Q

0
 can 

be estimated using formulas (19).  In particular, if y
0
 m L 

(a smoke cloud transforms into a plume), then 
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Let the solar radiation flux I

0
, incident on an 

aerosol cloud, be 340 W/m2 and be fully absorbed by 
aerosol.  Then Q

0
 ≈ I

0
 / (ρcp 

H) ≈ 0.26⋅10–3 deg/s.  For 

⏐y⏐ < y
0
 we obtain the estimate w ≈ 4 cm/s.   

Since the optical thickness of the smoke cloud 
decreases with time, the quantity of absorbed solar 
radiation decreases as well, and so the vertical velocity of 
lifting of finely dispersed fraction of smoke particles also 
decreases. 

Account of aerosol polydispersity.  To take into 
account aerosol polydispersity, its particle size 



S.A. Soldatenko and O.M. Sobolevskii  Vol. 7,  No. 2 /February  1994/ Atmos. Oceanic Opt.  115 

 

distribution is divided into individual fractions in which 
the particles are assumed to be monodisperse, and the 
aerosol transfer equation is integrated numerically for 
each fraction. 

The mass m(ri, ri+1
) of the particle whose radii are 

within the interval ra ∈ [ri, ri+1
] is determined as follows.  

The formula7 
 

M
t
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4
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∞
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0
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is valid for the total mass M

t
.  Here ρa is the smoke aerosol 

particle density,  N is the number of aerosol particles,  f(ra) 

is the aerosol particle size distribution function (this 
function is described by the lognormal law7),  r

0
 is the 

mean geometric radius of particles, and  σa
2 is the variance 

of the logarithm of ra. 

In its turn, the following expression can be written for 
mass m(ri, ri+1

): 
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where n(ri, ri+1

) is the number of smoke particles whose 

radii are within the interval ra ∈ [ri, ri+1
]. 

It follows from comparison of Eqs. (21) and (22) that 
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M
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ri
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f(r) dr 
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r3
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Thus to determine the mass of aerosol particles whose 
radii are within the interval ri – ri+1

, it is necessary to 

assign the total mass M
t
 and the parameters of aerosol 

microstructure, namely, the modal radius rm and variance sa
2

, since r
0
 = rm exp(σa

2) (see Ref. 7). 

Parametrization of washout.  Aerosol concentration in 
the atmosphere is significantly influenced by natural clouds, 
hazes, and precipitation.  In this case microphysical 
characteristics, cloud amount, precipitation intensity, 
composition and morphology of aerosol particles, as well as 
dynamic factors play an important role.  The washout rate 
also depends indirectly on the altitudes at which aerosol is 
concentrated in the atmosphere (the upper troposphere is 
much drier than the lower one).  It should be noted that 
washout is minimum in the so–called Greenfield 
discontinuity region (0.1 ≤ ra ≤ 1.0 μm).  This minimum is 

caused by the fact that for these particles the effect 
produced by Brownian diffusion on particle sedimentation 
already becomes sufficiently weak, while the effect of 
entrainment is not yet sufficiently pronounced.  Therefore, 
the aerosol particles whose sizes fall into the Greenfield 
discontinuity region have the longest lifetime in the 
atmosphere. 

When solving the problems of mathematical modeling 
of aerosol formations it is expedient to use the approach 
which is based on studying two–component stochastic 
systems consisting of cloud (rain) particles and aerosols.  In 
this case it is possible to solve the problem of coagulation8 

 

 

dni/dt = – K(ri, Rk) ni Nk , (24) 
 

where ni and Nk are the numbers of impurity particles and 

droplets (rain, cloud, or haze) of radii ri and Rk per unit 

volume, respectively;  K(ri, Rk) is the coefficient of 

proportionality which is expressed in terms of the 
coefficient of entrainment.7 

Integration of Eq. (24), provided that Nk is constant, 

enables one to find a general law of aerosol particle 
concentration decrease in time 

 
ni(t) = ni(0) exp [– K(ri, Rk ) Nk t]. (25) 

 
Hence the constant of aerosol particle removal due to 
washout is determined from the expression 

   
Λi = K( ri, Rk ) Nk. 

 
Thus the problem of parametrization is reduced to the 

determination of the washout constant Λi.  We constructed 

the plots of the washout constant vs. the cloud–cover index 
for different isobaric levels based on the statistical data 
processing (Fig. 1).  These plots are used in numerical 
modeling of evolution of aerosol formations in the 
atmosphere. 

 

 
 

FIG. 1.  Washout coefficient vs. the cloud–cover index at 
different isobaric levels.  Not in the Greenfield 
discontinuity region:  1, 2, and 4) P = 850, 700, and 500 
hPa, respectively.  In the discontinuity region:   
3) P = 850 and 700 hPa, 5) 500 hPa. 

 
Parametrization of sedimentation.  The force of 

gravity affecting aerosol particles causes their 
sedimentation at a rate that primarily depends on particle 
size and density.  We used analytic relations for 
calculating the rate of spherical particle sedimentation.  
When the particle diameter is larger than 150 μm, their 
sedimentation is described by the Newton formula 

 

w
s
 = 174 ⎝

⎛
⎠
⎞g 

ρa – ρ

ρ  da

1/2

, (26) 

 
where w

s
 is the rate of sedimentation of a particle of 

density ρa. 
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When the aerosol particle size varies from 3 to 150 μm, 
the rate w

s
 is estimated by the known Stokes formula  

 

w
s
 = 

g(ρa – ρ)

18 η
 
d
 

2
a
 
, (27) 

where η is the coefficient of molecular viscosity. 
For small particles (da < 3 μm) the Stokes formula is 

refined by application of the dimensionless Kunninghem 
coefficient 
w

s
 = w′

s
 [1 – a ( λ

m
/da) ] , (28) 

 
where ws' is the Stokes fall rate,  λ

m
 is the mean free path of 

air molecules and a ∈ [1.3, 2.3] is the constant. 
The relations (26)–(28) allow one to calculate the sink 

of aerosol mass from aerosol clouds under gravity. 
Conclusion.  The present paper describes a regional 

model of pollution transport in the atmosphere which is 
algorithmically written as an independent block.  The model 
was tested by solving, by way of example, the problem of 
spread of smoke clouds in the atmosphere.9  The capabilities 
and advantages of the model allow its usage in the problems of 
regional ecology. 
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