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It is shown that symmetrized wave functions of tetrahedral molecules can be 
used to derive the calculational formulae for the coefficients of broadening of the 
spectral lines corresponding to the transitions from the energy levels with symmetry of 
the A1 

, A2 
, and E types. The formulae for the wave–breaking function taking into 

account the octupole–octupole, octupole–quadrupole, and dispersion interactions are 
derived in the Anderson–Tsao–Curnutte approximation. For A and E–type transitions 
the coefficients of pressure broadening of spectral lines of the v4 band of methane by 

air and nitrogen have been calculated. Comparison between experimental and 
computational data shows their good qualitative agreement. 

 
INTRODUCTION 

 
Advances in laser and Fourier spectroscopy call for 

an improved accuracy of calculations of the parameters of 
spectral lines. In particular, this concerns the calculations 
of half–widths and shifts of lines of tetrahedral 
molecules, typical example of which is the methane 
molecule. The peculiarities of tetrahedral splitting of 
spectrum make it impossible to measure directly the 
above–indicated parameters, which is why it is necessary 
to perform an exact calculation of broadening and shift of 
lines of molecules of this type. The applicability of the 
Anderson–Tsao–Curnutte6 theory of spectral line 
broadening to the study of various gases has already been 
proved. Based on this theory, self–broadening and 
broadening of linear and symmetric and asymmetric top 
molecules by foreign gases can be calculated. 

Tejwani and Varanasi,1 Yamomoto and Hirono,2 and 
others generalize this theory to the molecules having 
nonzero first octupole moment in a ground state. Such 
highly symmetric molecules as CH4, SiF

4
, GeH

4
, SF

6
, 

and so on fall into this group.  
In the Anderson–Tsao–Curnutte (ATC) 

approximation a main contribution to broadening comes 
from the wave breaking function S

2
(b). Calculational 

formulae for S
2
(b) including octupole interactions were 

presented in Refs. 1–5 and 7. A limitation of the 
calculational formulae obtained in Refs. 1–3 is that they 
were derived in the assumption of axisymmetric charge 
distribution in the methane molecule, using the wave 
function of a symmetric top. The last–mentioned results 
in the fact that the "strict" selection rules of octupole 
transitions are violated. 

Neglect of a tetrahedral character of splitting of the 
methane spectrum results in the fact that the calculated 
values of line broadening coefficients corresponding to the 
transitions from rotational levels with different degrees of 
symmetry are equal in magnitude.1–7 This is totally 
inconsistent with the experimental data.8,9 For example, 
in Refs. 1–7 the difference between the calculated values 

of broadening coefficients for rotational transitions of the 
A, E, and F–types becomes pronounced only for J ≤ 8 
exclusively due to the fact that not all necessary types of 
rotational symmetry at small J are taken into account in 
the wave functions, i.e., at J ≤ 8 the number of possible 
nonradiating transitions differs strongly (with regard to 
the selection rules for octupole transitions). 

Varanasi4 took into complete account the symmetry 
of a molecule and the character of tetrahedral spectrum 
splitting. He took into consideration the spherical 
character of charge distribution in methane and applied 
symmetrized rotational wave function to derive S

2
(b). 

These wave functions transform according to the 
representation of the symmetry group of a molecule. In so 
doing, the nonzero hexadecahedron moment of molecule 
and dispersion interaction between colliding particles 
were taken into consideration. We note that for 
broadening and shift of methane lines which have no 
pronounced dipole and quadrupole moments in the ground 
vibrational state, dispersion and induction interactions 
may be essential. The result obtained in Refs. 4 and 5 can 
be used to calculate broadening of the F

1
 ↔ F

2
 

rovibrational transitions, but it is inapplicable to the 
A

1
 ↔ A

2
 and E ↔ E transitions. 

Such a limitation is caused by the fact that only for 
z–components of the F

1
 and F

2
 three–dimensional 

irreducible representations of the Td symmetry group to 

which the methane molecule belongs, the wave functions 
have a compact form. Thus, only for the F

1
 ↔ F

2
 

transition one can obtain simple enough expressions for 
the function S

2
(b). 

In this paper, the formulae which can be used to 
calculate the coefficients of broadening of lines of 
molecules with the Td symmetry corresponding to the 

transition from rovibrational energy levels with any types 
of symmetry A

1
, A

2
, E, F

1
, and F

2
 are presented. We 

note that expressions for intermolecular interaction 
potential and octupole and hexadecahedron moments in 
tensor form were borrowed from Ref 4. The selection rule 
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for J on octupole transitions yields ΔJ = 0, ±1, ±2, ±3 
rather than ΔJ = ±1, ±3 as was mentioned in Refs. 1, 2, 
and 7 for the model of axial charge distribution. The 
selection rules for the other quantum numbers on octupole 
transitions remain the same, that is, A

1
 ↔ A

2
, E ↔ E, 

F
1
 ↔ F

2
, and Δn = 0. 

 
1. WAVE FUNCTIONS 

 
As has already been mentioned, formulae derived in 

Ref. 4 can be used to calculate the broadening only on 
the F

1
 ↔ F

2
 transitions. This is connected with the fact 

that the author used the rotational wave functions 
derived by Ozier and Fox.10 These functions are 
transformed directly with the use of irreducible 
representation of the Td group. But orthogonal functions 

were obtained only for symmetry levels F
1
 and F

2
. The 

wave functions transforming with the use of irreducible 
representations A

1
, A

2
, and E required further numerical 

orthogonalization.  
In our work we applied the wave functions obtained 

independently by Itano11 and by Cheglokov and 
Ulenikov.12  

Owing to cumbersome form, the functions 
themselves are not presented here. For further 
calculations it is convenient to write down the rotational 

wave functions ⏐JKΓM> in more universal and compact 
form. As usually, here J and K are the rotational 
quantum numbers, M is the magnetic quantum number, 
and Γ is the number indicating the symmetry of the 
energy level. 

After simple manipulation on account of the fact 

that for even M and M′  

d 
J
M M'

(π
2) = (– 1) 

J d 
J
M–M'

(π
2) ,  

 

the functions transforming according to representations 
Γ = A

1
, A

2
, E, F

1
, and F

2
 of the Td group may be written in 

the compact form  

⏐JKΓM> = A 
J Γ
K  ∑

K
∼

 B 
J Γ

KK
∼

 (⏐JK∼M> + τ Γ (– 1) 
J ⏐J – K

∼
 M> ). 

(1) 
Here ⏐JKM> are the known functions of a symmetric top 
 

⏐JKM> = ( )
2 J + 1

8π2  D 
J
MK (α β γ)* , (2) 

where α, β, and γ are Eulerian angles. The magnitudes of the 

coefficients A 
J Γ
K , B 

J Γ

KK
∼, and τΓ for various degrees of symmetry 

Γ are listed in Table I. The necessary coefficients are given for 
both components of doubly degenerate state E (due to the fact 
that only the E

1
 ↔ E

2
 transitions occur) and only for the z–

components of the triple degenerate states F
1
 and F

2
 (for 

calculation of line broadening and shift it is sufficient to 

consider the transitions between the components F
1
z ↔ F

2
z).  

Hereinafter for brevity d 
KK
∼

J  ≡ d 
KK
∼

J (π2) are the 

components of the Wigner function. In equations (1) the 
indices K take only positive values with a step being equal to 

4. Summation over indices K
~
 is performed up to J inclusively, 

and the number of functions with different K must be equal to 
the number of symmetry sublevels Γ at the level with the 
given J (see Refs. 10–12). 

TABLE I. 
 

Γ K 
K
~
 

A 
J Γ
K  B 

J Γ

KK
∼ τ 

Γ
 

A
1
 0, 4, 8 0, 4, 8 1/ 6 

4 d 
J
KK
∼  + δKK

∼  
1 

A
2
 2, 6, 102, 6, 10 1/ 6 

4 d 
J
KK
∼  – δKK

∼  
1 

E
1
 0, 4, 8 0, 4, 8 1/2 6 

4 d 
J
KK
∼  – 2δKK

∼  
1 

E
2
 0, 4, 8 2, 6, 10 –2 

d 
J
KK
∼  

1 

F 
z
1
 0, 4, 8 0, 4, 8 

1 – (– 1) 
J δK0

2 (1 + δK0
)3/2

 δKK
∼  –1 

F 
z
2
 2, 6, 102, 6, 10 1/ 2 δKK

∼  –1 

 

As was noted in Refs. 10–12, the vibrational functions 
of type (1) for the A

1
, A

2
, and E symmetry are not 

orthogonal. Numerical orthogonalization makes it 
impossible to obtain the equation for the wave breaking 
function S

2
(b). It was shown in Ref. 12 that it is possible 

to orthogonalize this function in analytical form. The 
orthogonalization of functions is carried out according to 
the formula 

 

⏐JKΓM>
ort

 

= ∑

K
~

=L

K

 α 
J
 
Γ

KK
∼  ⏐JK

~
ΓM> , (3) 

where the coefficients are represented by the following 
equations:  

α 
J
 
Γ

KK =
⎩
⎨
⎧ 

 
1 + δK0

 (– 1) 
J + (4 (– 1) 

J – 6 δ
ΓE

) d 
J
KK – 

– ∑
l=L

K–4

 ∑
i ≤ l
j ≤ l

K

 α 
J
 
Γ

li  α 
J
 
Γ

lj  [δK i + (4 (– 1)Γ – 6 δ
ΓE

) d 
J
K i] × 

× [δK j + (4 (– 1)Γ – 6 δ
ΓE

) d 
J
K j] ⎭

⎬
⎫ 

 

–1/2
 , (4) 

α 
J
 
Γ

Kl  = – α 
J
 
Γ

KK ∑
i^l

K–4

 ∑
j=L

i

 α 
J
 
Γ

ij  α 
J
 
Γ

il  [δK j + (4 (– 1)Γ – 6 δ
ΓE

) d 
J
K j]. 

(5) 
 

The term (–1)Γ in Eqs. (4) and (5) is equal to  

(–1)
A

2 = –1; (–1)
A

1 = (–1)E = 1, and L is equal to the 
initial value of K from Table II. 

Substituting Eq. (1) into Eq. (3), we derive the final 
compact expression for the orthogonal functions, 
transforming according to A

1
, A

2
, and E representations. 

The possible values of the indices K, K
~
, and K* entering 

into the formula  

⏐JKΓM> = ∑

K
∼

=L

K

 α 
J
 
Γ

KK
∼  A 

J
 
Γ

K
∼  ∑

K*

J

 B 
J
 
Γ

K
∼
K*

 × 

× (⏐JK*M> + τ Γ (– 1) 
J ⏐J – K*M>) (6) 

 

are listed in Table II. 
 

TABLE II. 
 

Γ A
1
 A

2
 E F

1
 F

2
 

K, K
~ 0, 4, 8 2, 6, 10 0, 4, 8, 12, 16 0, 4, 8 2, 6, 10

K* 0, 4, 8 2, 6, 10 0, 4, 8,  2, 6, 10 0, 4, 8 2, 6, 10
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2. THE FUNCTION S
2
(b) FOR OCTUPOLE 

INTERACTIONS 
 
The salient points of the theory of spectral line pressure 

broadening were discussed at length in Refs. 1, 4, and 6; 
therefore, here we note only some moments and consider as an 
example the expression for the function S

2
(b) in some 

important cases of multipole interactions, being significant 
when calculating the spectral line broadening of methane. 

In the ATC approximation (Ref. 6) S
2
(b) (more precisely 

S
2
(b)

0
) is calculated according to the following formula:  

 

S
2
(b)

0
= 

1
2 

∑
Mi M2

 
(Ji Ki Mi J2

 K
2
 M

2
⏐P2⏐Ji Ki Mi J2

 K
2
 M

2
)

(2 Ji + 1) (2 J
2
 + 1)  + 

 

+ ∑
Mf M2

 
(Jf Kf Mf J2

 K
2
 M

2
⏐P2⏐Jf Kf Mf J2

 K
2
 M

2
)

(2 Jf + 1) (2 J
2
 + 1)  ,  (7) 

 
where  
 

P = ⌡⌠
–∞

∞

 U 
–1
0

 Hc(t) U0
 dt ,  (8) 

 

(m⏐P⏐n)= ⌡⌠
–∞

∞

 exp (i ωmn t) (m⏐Hc(t)⏐n) dt.  (9) 

 

Here Hc(t) is
 a part of the intermolecular potential responsible 

for the concrete multipole interaction. The expressions for 
Hc(t) (of CH

4
) can be found in Refs. 2 and 4. The possible 

simplification 
 

∑
Mi M2

 (Ji Ki Mi J2
 K

2
 M

2
⏐P2⏐Ji Ki Mi J2

 K
2
 M

2
) = 

 

= ∑
J'
i K

'
i M

'
i

J'
2
 K'

2
 M'

2

 ⏐(Ji Ki Mi J2
 K

2
 M

2
⏐P2⏐J'i K'

i M'
i J'

2
 K'

2
 M'

2
)⏐2.  (10) 

 

is an important property of the operator P which can be 
used for calculation of the matrix elements in Eq. (7). 

The matrix elements of Eqs. (7)–(10), in analogy 
with Ref. 6, are written on the basis of a symmetric top. 
We apply wave functions (6) and data listed in Tables I 
and II to calculate Eq. (7). 

Introducing the designation  
 

R 
J
 
ΓK

J'C'K'
 = ⏐ ∑

K
∼
=L

K
∼
'=L'

K, K'

 ∑
K*, K*'

J, J'

 α 
J
 
Γ

KK
∼  A 

J
 
Γ

K
∼  B 

J
 
Γ

K
∼
K*

 α 
J'Γ'
K'K

∼
'
 A 

J'Γ'
K
∼
'

 B 
J'Γ'
K
∼
'K*'

 × 

 

×
 
[(– 1) 

J′ (C 
J'K'
JK3–2

 – C 
J'K'
JK32

) + τ Γ C 
J'–K'
JK3–2

]⏐
2
, (11) 

 
we can represent S

2
(b)

0
 in a very compact form. 

Dropping out cumbersome intermediate calculations, we 
note only that in the derivation of the resultant 
expressions the following symmetry relations for the 
Klebsch–Gordan coefficients13 were used:  

∑
M, M'

 (C 
JM
J3M'm)2 = 

(2 J + 1)
7  ,  ∑

K'

 C 
J'K'
JK32

 C 
J'K'
JK3–2

 = 0 , 

 

C 
cγ
aαbβ = (– 1)b+β 

2 c + 1
2 a + 1 C 

c–α
c–γ bβ . 

 
a) Octupole – octupole interaction 

 

S
2
(b)

0
= 

16384
1225  ⎝

⎛
⎠
⎞Ω

1 
Ω

2

h ν

2 1

b12 

∑
J'iΓ'iK'i
J'
2
Γ'
2
K'

2

 R 
JiΓiKi
J'iΓ'iK'i

 R 
J
2Γ2

K
2

J'
2
Γ'
2
K'

2
 f

5
(k)+[i → f ]. 

(12) 
 

b) Octupole – quadrupole interaction 
 

S
2
(b)

0
= 

2048
875 ⎝

⎛
⎠
⎞Ω

1 
Q

2

h ν  

1

b10
∑

J'iΓ'iK'i
J'
2

  

 R 
JiΓiKi
J'iΓ'iK'i

 (C 
J'
2
0

J
2
020

)2
 f

4
(k)+ [i → f ]. 

(13) 
 

c) Dispersion contributions 
 

S
2
(b)

0
= 

510p2

57344⎝
⎛

⎠
⎞U

1
U

2

U
1
 + U

2
 
α

2 
A

1

h ν

2 1

b12
∑

J'iΓ'iK'i

 R 
JiΓiKi
J'iΓ'iK'i

 g
4
(k)+ [i → f]. 

(14) 
 

In expressions (12)–(14), as usually, index 1 refers 
to an absorbing molecule and 2 – to a buffer molecule, i 
and f denote the lower and upper states of transitions. Ω 
is the octupole moment and Θ is the quadrupole moment. 
Designations of the rest quantities and concrete 
expressions for resonance functions f

4
(k), f

5
(k), and g

4
(k) 

can be found in Refs. 1–6. 
For the cases of pressure broadening the part of the 

function S
2
(b)m, responsible for elastic collisions, is equal 

to zero, which is why the expressions for S
2
(b)m are not 

presented here. 
 

3. CALCULATION OF THE BROADENING OF LINES  
OF THE ν

4
 BAND OF CH

4
 

 
As an example, let us calculate by the obtained 

formulae the line broadening of the P and R–branches of 
the ν

4
 band of methane corresponding to the transitions 

from the energy levels with symmetry of the A
1
, A

2
, and 

E types. We also compare the obtained results with those 
reported in Ref. 9 and with the results of earlier 
calculations. Let us consider the case of pressure 
broadening of spectral lines of CH

4
 by nitrogen and air. 

In so doing, the largest contribution to the broadening 
comes from octupole – quadrupole interaction. The 
constant dipole moment, arising in the ground state due 
to rovibrational interaction, is too small to make 
considerable contribution to broadening. 

As usually, the coefficient of pressure broadening by 
air is equal to 

 
γ
air

 =
 
0.79γ

N
2
 + 0.21γ

O
2
.  

 
For the ATC model1,2,4,6 
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γ0JiΓiKi
 = 

n ν
2π c 

∑
J
2

 ρJ
2
 σJ

2
 , (15) 

 

σJ
2 

=
 
π b2

0
 [1 + S

2
(b)

0
] , 

 
where b

0
 is the impact parameter, n is the molecular 

density at a pressure of 1 atm, ν is the rate of collision of 
molecules, ρJ2

 is the Boltzmann population of the level J
2
 

of a buffer molecule, σJ2
 is the collision cross section. 

The calculations were performed at a pressure of 1 atm 
and T = 296 K. The energy levels of ground and excited 
states were calculated with the use of rotational constants 
and constants of tetrahedral splitting reported in Ref. 14. 
In so doing, only diagonal matrix elements of 
Hamiltonian were taken into account.  

The results of calculations for the cases of pressure 
broadening of lines with symmetry of A and E types by 
nitrogen and air are listed in Tables III and IV. The 
results for small values of J are absent, because the 
pressure broadening of lines with small J by nitrogen was 
not experimentally observed in Ref. 9. 

 

TABLE III. Coefficients of pressure broadening of lines of 
the ν

4
 band by N

2
 (cm–1⋅atm–1). 

 

J Γ n 

Experiment, 
Ref. 9 

AFGL, 
Ref. 9 

Calculation, 
Ref. 7 

Our 
calculation

P
6
 A

1
 1 0.0580 0.0510 0.0527 0.0565 

P
6
 A

2
 1 0.0599 0.0510 0.0527 0.0618 

P
6
 E 1 0.0586 0.0570 0.0601 0.0607 

P
7
 A

2
 1 0.0574 0.0570 0.0600 0.0600 

P
7
 E 1 0.0461 0.0570 0.0600 0.0592 

P
8
 A

1
 1 0.0515 0.0550 0.0576 0.0523 

P
8
 E 1 0.0465 0.0550 0.0581 0.0491 

P
9
 A

2
 1 0.0570 0.0540 0.0567 0.0625 

P
9
 E 1 0.0505 0.0540 0.0567 0.0560 

P
10

 A
1
 1 0.0544 0.0530 0.0555 0.0602 

P
10

 A
2
 1 0.0448 0.0520 0.0555 0.0587 

R
8
 A

1
 1 0.0481 0.0540 0.0576 0.0572 

R
8
 E 1 0.0521 0.0540 0.0581 0.0670 

R
9
 A

1
 1 0.0539 0.0530 0.0567 0.0682 

R
9
 A

2
 1 0.0481 0.0540 0.0567 0.0572 

 

TABLE
 
IV.  Coefficients of pressure broadening of lines with symmetry of the A and E types by air. 

J Γ n 

Experiment, 
Ref. 9 

Experiment, 
Ref. 8 AFGL, Ref. 9 

Calculation, 
Ref. 7 Our calculation

P
2
 E 1 0.0654  0.0530 0.0531 0.0632 

P
3
 A

2
 1 0.0618  0.0580 0.0582 0.0622 

P
4
 A

1
 1 0.0635  0.0470 0.0466 0.0632 

P
4
 E 1 0.0579  0.0550 0.0547 0.0603 

P
5
 E 1 0.0556  0.0610 0.0612 0.0584 

P
6
 A

1
 1 0.0586  0.0510 0.0508 0.0625 

P
6
 A

2
 1 0.0607  0.0510 0.0508 0.0558 

P
6
 E 1 0.0603  0.0570 0.0569 0.0647 

P
7
 A

2
 1 0.0575  0.0570 0.0569 0.0622 

P
7
 E 1 0.0466  0.0570 0.0569 0.0543 

P
8
 A

1
 1 0.0521  0.0550 0.0547 0.0523 

P
8
 E 1 0.0477  0.0550 0.0552 0.0543 

R
0
 A

1
 1 0.0556  0.0610  0.0550 

R
2
 E 1 0.0571 0.0534 0.0490  0.0632 

R
3
 A

2
 1 0.0576  0.0550  0.0678 

R
4
 A

1
 1 0.0608 0.0586 0.0450  0.0632 

R
4
 E 1 0.0567 0.0547 0.0530  0.0603 

R
5
 E 1 0.0553  0.0590  0.0584 

R
6
 A

1
 1 0.0584  0.0500  0.0624 

R
6
 A

2
 1 0.0591  0.0500  0.0701 

R
6
 E 1 0.0556  0.0560  0.0572 

R
7
 A

2
 1 0.0555  0.0550  0.0549 

R
7
 E 1 0.0461  0.0550  0.0543 

R
8
 A

1
 1 0.0497  0.0540  0.0520 

R
8
 E 1 0.0519  0.0540  0.0616 

CONCLUSIONS 
 

These results are preliminary and must be refined. First, 
we took into consideration only octupole–quadrupole and 
fundamental dispersion interactions and ignored finer effects. 
Second, we did not adjust the parameters Ω, Θ, and b

min
. The 

matter is that the values of Ω and Θ in various experiments 
differ strongly, resulting in large variation of S

2
(b). The 

values of Ω and Θ were borrowed by us from Ref. 5.  
At present, there are a great number of experimental 

results on line broadening, but only some of them can be 
compared with the calculational results, because in the most 
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papers the data are reported for individual lines or they are 
represented in graphical form. Our data from Tables III and 
IV show the pronounced differences between the calculated 
values of the broadening coefficients corresponding to the 
transitions from the energy level with symmetry of the A

1
, 

A
2
, and E types. Such a dependence was not observed in the 

results of calculations of the other authors. 
In conclusion it should be noted that the obtained 

formulae can be used to calculate the broadening of lines 
with the symmetry of the A, E, and F types. 

Expressions (11) and (12) seem to be cumbersome, but 
in concrete calculations they simplify because in accordance 
with the selection rules the summation over certain indices 

is cancelled (for example, over Γi
′ and Ki

′). 
 

REFERENCES 
 

1. G.D.T. Tejwani and P. Varanasi, J. Chem. Phys. 55, 
1075–1083 (1971). 
2. G. Yamamoto and M. Hirono, J. Quant. Spectrosc. Radiat. 
Transfer 11, 1537–1545 (1971). 

3. M. Hirono, J. Phys. Soc. Japan 35, 871–882 (1973). 
4. P. Varanasi, J. Quant. Spectrosc. Radiat. Transfer 14, 995–
1008 (1974). 
5. G.D.T. Tejwani, P. Varanasi, and K. Fox, J. Quant. 
Spectrosc. Radiat. Transfer 15, 243–254 (1975). 
6. C.J. Tsao and B. Curnutte, J. Quant. Spectrosc. Radiat. 
Transfer 2, 41–91 (1962). 
7. G.D.T. Tejwani and K. Fox, J. Chem. Phys. 60, 2021–
2026 (1974). 
8. V.M. Devi, S.P. Rinsland, M.A.H. Smith, and 
D.C. Benner, Appl. Opt. 24, 3321–3322 (1985). 
9. V.M. Devi, S.P. Rinsland, M.A.H. Smith, and 
D.C. Benner, Appl. Opt. 27, 631–651 (1988). 
10. I. Ozier and K. Fox, J. Chem. Phys. 52, 1416–1421 
(1970). 
11. V.M. Itano, J. Mol. Spectrosc. 71, 193–228 (1978). 
12. A.E. Cheglokov and O.N. Ulenikov, J. Mol. Spectrosc. 
110, 53–64 (1985). 
13. M.A.H. Smith, S.P. Rinsland, V.M. Devi, and 
D.C. Benner, Spectr. Acta 48A, 1257–1272 (1992). 
14. J. Susskind, J. Mol. Spectrosc. 45, 457–466 (1973). 
 

 
 
 


