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A possibility of estimating beam perturbations due to gravitational convection 
and transverse air blow from the thermal blooming effect is demonstrated in this paper 
for optical beams of variable radii propagating along a model laboratory path. 
Perturbations of focused and self–focused beams occurring on the propagation path 
are proposed to be estimated based on the value of their mean radii, for which we 
have derived approximate analytical relationships. 

 
An intense optical beam considered in the laboratory 

experiment was distorted due to thermal blooming. This 
paper describes the investigation carried out with 
gravitational convection in a stationary medium as well as 
with a forced blow with a transverse gas flow, which can 
lead to a reduction of perturbations. The beam path 
contains, as a rule, beam folding and focusing (defocusing) 
mirrors and lenses, telescopes, segments with a widened or 
narrowed transverse size of the beam and so on. 

Dimensionless equations of paraxial optics (a/L � 1, 

a is the characteristic radius of the beam, and L is the 
characteristic length of the path) in the geometric–optics 
approximation (F = 2πa2/λL → ∞, λ is the radiation 
wavelength) can be written in the form 
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 I z=0 = I0(x, y) ;  θ z=0 = θ0(x, y) . (3) 

 
Here, the intensity I is related to the characteristic 
intensity I*, the angle θ of beam deviation from the 

propagation direction z is related to the value α/L, the 
coordinate z is related to the characteristic path length L, 
and the coordinates x, y are related to the characteristic 
transverse size of the beam a. The absorption parameter 
N

α
 = αL, where α is the coefficient of radiation 

absorption with the medium, the self–blooming parameter 
N = ε(L/a)2(n0 – 1)/n0, where n0 is the index of 

nonperturbed medium refraction; ε is the scale of the 
medium density perturbation; ρ1 = Δρ/ερ0 is the 

dimensionless function of density perturbation; ρ0 is the 

density of nonperturbed medium; I0(x, y), θ0(x, y) are 

the preset initial distributions of the intensity and the 
angle of beam deviation (divergence); ex and ey are the 

unit vectors along the axes x and y. In the general case 
the function ρ1 is determined from the solution of the 

system of hydrodynamics equations (conservation of mass, 
momentum, energy, and equation of state). With the 
transverse air flow moving with the velocity V0 much 

lower than the speed of sound the density perturbation is  

described by the transfer equation which is obtained from 
the linearized equation of energy conservation: 
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∂
∂y  ρ1 = – I ; ε = α I* a/ρ0 h0 V0 ; I* = W0/πa2. (4) 

 
Here W0 is the total initial power of the beam; h0 is the 

enthalpy of the nonperturbed medium. The time t is 
related to the characteristic time of a liquid (gas) particle 
travel across the beam a/V0. The y axis is directed along 

the blow velocity. 
For a self–induced gravitational convection along 

the horizontal beam path, the density perturbation is 
determined by the system of hydromechanics equations in 
the Boussinesq approximation: 
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where g is the acceleration due to gravity, Eu = ρ0 Vc

2/P0 

is the Euler number; P0 is the pressure of nonperturbed 

gas; Vc is the characteristic rate of gravitational 

convection; tc = a/Vc is the characteristic time of its 

development; Fr = Vc
2/ag is the Froude number. 

Viscosity and thermal conductivity can be neglected in 
the majority of cases. It should be noted that at air blow 

velocities V0 � Vc the scale of density perturbations ε 
and the parameter of thermal blooming N are much 
smaller than those under gravitational convection. Hence 
using forced air blow we can substantially reduce the 
thermal blooming. 

Consider now a model laboratory path divided into 
three segments. At the start of the first segment the beam 
has the radius a1 = a, and the segment length is L1. At 

the end of this segment a telescope with magnification 
factor k1 is placed. At the end of the second segment of 

the length L2 a focusing mirror (or lens) is positioned. 

When there is no initial divergence and perturbations on 
the path, the beam, on the third segment of the length 
L3 , is focused into a point. 

In vacuum the trajectories of rays (corresponding, 
e.g., to an exponential radius) are described by the 
following expressions: 
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a) 0 ≤ z ≤ z1 ; z1 = L1/L : 

θ01 = θ0
 ; (8) 

 

r01(z) = a1/a + z θ01 ; r011 = r01(z1)
 ; (9) 

 
b) z1 ≤ z ≤ z2 ; z2 = (L1 + L2)/L : 

 

θ02 = θ01/k1
 ; (10) 

 

r02(z) = r011 k1 + (z – z1) θ02 ;  r022 = r02(z2)
 ; (11) 

 
c) z2 ≤ z ≤ z3 ; z3 = (L1 + L2 + L3)/L : 

 

θ03 = θ02 – r022/f ; f = L3/L ; (12) 

 

r03(z) = r022 +(z – z2) θ03
 . (13) 

 
In expressions (10) and (11) it was taken into account 

that the telescope expands the beam by a factor of k1 and 

decreases the beam divergence by a factor of 1/k1. 

In a nonlinear medium1,2 the perturbations of the 
divergence angle and radius of beam by order of magnitude 
are estimated from the relations 
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Here r0(z) = r01(z); r02(z); r03(z) are the variable 

radii of a beam in vacuum. The exponents m and n in 
Eq. (14) are: m = 1, n = 1 with transverse air blow; 
m = 2/3 and n = 1 with gravitational convection. The 
factors B1(z) and B2(z) were obtained from the linearized 

solution of equations (1) and (2) which is strictly valid as 
N → 0. A comparison with numerical calculations1 
showed that, at least for averaged characteristics, these 
values give satisfactory results for moderate values N ∼ 1. 
At the same time, calculation of integrals (14) and (15) is 
simpler than the numerical solution of Eqs. (1) and (2). 
In some situations the approximated analytical relations 
for the functions B1 and B2 are valid. They allow one to 

rapidly estimate the contribution of any segment of the 
path to the beam perturbation. 

Taking into account the fact that the absorption 

parameter is, as a rule, small (N
α
 � 1), the divergence 

angle and the mean radius of a beam in a nonlinear 
medium can be evaluated from the formulas 

 
a) 0 ≤ z ≤ z1 : θ1(z) g θ01 + r01(z) B1(z) C ; 
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b) z1 ≤ z ≤ z2 : θ2(z) g θ11/k1 + r02(z) C Δ B1(z) ; 
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c) z2 ≤ z ≤ z3 : B1(z) = B1(z2) + 
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The parameter N is written with indices (segment numbers) 
with the account that different segments can contain 
different substances under different conditions (e.g., the 
absorption coefficients and the air blow velocities are 
different on different segments of the path). 

Using the approximate (16)–(21) and exact, (14) and 
(15), values of the factors B1 and B2, we analyzed the beam 

perturbations along the paths with one or two telescopes, 
along the paths including segments with air of different 
humidity and segments with technical nitrogen containing 
different concentrations of oxides which effectively absorb 
radiation in the IR range under study. We considered a mode 
of self–induced convection and transverse air blow of the 
beam. For providing control we made numerical calculations 
by Eqs. (1) and (2) by dividing the beam into an array (of the 
order of 10000) of elementary ray tubes, to each of which a 
portion of beam energy and an initial angle were prescribed. 
The variation of the angle and, hence, the coordinates of an 
individual tube were calculated from Eq. (2). Energy decrease 
in the tube due to absorption was calculated by the Bouguer–
Beer law rather than by Eq. (1). Diffraction on nonlinear 
inhomogeneities of the medium was neglected. The Boussinesq 
equations (5)–(7) were solved using the algorithm from Ref. 3. 
Depicted in Fig. 1 are the plots of the mean beam radius  

rm = ⌡⌠
  –∞

  +∞

 
 ⌡⌠

 
 [ x

2 + (y – Δy)2] I dx dy/W (where  
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 ⌡⌠

 
 y I dx dy/W is the center of gravity displacement,  

W = ⌡⌠
  –∞

  +∞

 
 ⌡⌠

 
 I dx dy is the total beam power) vs the factor of 

thermal broadening B2(z = z3) for different situations  
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described. For moderate values of the factor B2(z3) < 6.5 

the mean radius is directly proportional to the value B2. For 

the values B2 approaching 10, linearity of the dependence 

rm(B2) is violated. For the beam focused at the end of the 

path the factors B1 and B2 have singularities at focus since 

the beam radius in vacuum tends to zero in the absence of 
initial divergence (within the framework of the wave theory 
the beam radius tends to diffraction limit ∼ 1/F). The 
values of the factors B1 and B2 take the values larger than 

10 in many situations. 
 

 
 

FIG. 1. A plot of the mean beam radius in a cross section 
under control vs a factor of thermal blooming. 
 

To estimate beam perturbations in such and similar 
situations, let us introduce a model of a beam with an 
elliptic cross section with varying size along the coordinates 
rx(z) and ry(z) and the corresponding divergence angles 

θx(z) = drx/dz and θy(z) = dry/dz as well as the center of 

gravity displacement coordinate of intensity distribution 
rd(z) and the corresponding angle θd(z) = drd/dz. 

The beam intensity varying along the path can be 
written as Iphys = Wphys/[π rx(z) ry(z)], and the density 

perturbation ρ1, according to Eqs. (4) or (7), can be 

estimated by the formulas (at least for a fixed thermal 
blooming) 

 

ρ1 ∼ exp (–N
α
z) / rx(z) ; ρ1 ∼ [exp (–N

α z)]
2/3/r2/3

x (z) r1/3
y (z) 

 

for the air blow or gravitational convections, respectively. 
Based on Eqs. (1) and (2) the following system of equations 
can be used to estimate the beam perturbations: 
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 , b = Kx N ; (22) 
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dz  = θc ; 
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α
 z)]l
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 , c = Kc N ; (24) 

 

where, under the air blow, we have l = 1, p = 1, q = 1, 
m = 0, and n = 2 and under gravitational convection: l = 2/3, 
n = 5/3, m = 1/3, p = 2/3, and q = 4/3. As comparison 
with the aforementioned numerical calculations showed the 
constants Kx = 1, Ky = 0.5 g Kc under fixed gravitational 

convection. If we neglect attenuation due to absorption 
(N

α
 = 0), then under the air blow conditions Eq. (22) is  

reduced to the equation of free fall (the indices "x" are 
omitted below): 

 

r′′ = ± b/r2 ; r′ = θ . (25) 
 

Under gravitational convection assuming that 
rx = const ry (for estimating perturbations by the order of 

magnitude such assumptions is valid) the analysis of 
solution of system (22)–(24) can be reduced to the analysis 
of solution of equation (25). The sign "minus" in front of 
the parameter b in Eq. (25) corresponds to the beam 
propagation under conditions of self–focusing caused by the 
shape or the medium properties profile. 

Integrating Eq. (25) one time we find 
 

r′2 ± 2 b/r = ± A2 ;  ⏐θ⏐ = å (2 b/r) ± A2 ; 

r = 2 b/(A2 å θ2) ;  A2 = θ2
1 ± (2 b/r1) , (26) 

 

where θ1 and r1 are the preset initial values. 

Let us integrate Eq. (26) and make a substitution:  

θ
∼
 = θ/A, r∼ = rA/2b, z∼ = (z – z1) A3/2 b. We obtain the 

following universal solutions for defocusing and self–
focusing, respectively: 
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∼
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∼r = 1/(1 å 
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The origin of the z axis is displaced by the value z1 by 

such a way that θ
∼
(z∼ = 0) = 0, r∼(z∼ = 0) = 1. The solutions 

of Eqs. (27) and (29) corresponding to beam propagation in 
a defocusing medium (curves 1) are constructed in Fig. 2. 

The linear dependence r∼ = z∼ is given for comparison too. 
Depicted here are dependences (28) and (29) related to a 
self–focused beam (curves 2). 

In a specific problem we realize some portion of 
universe solutions (27)–(29) which, depending on the value 
of the known parameter θ1, r1, b, and the path length, can 

contain or not a cross section with a minimum (or 
maximum) mean radius. 
 

 
 

FIG. 2. Variation of the mean beam radius and the 
divergence angle along the path which was obtained from 
solution of Eqs. (27)–(29). 
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The solution (27) and (29) provides asymptotic 
relationships 

 

∼r = ∼z – 0.5 ln (4∼z) + ... ;  
∼
θ = 1 – 1/2∼z + ... ;  ∼z → ∞ , (30) 

 

∼r g 1 + 
∼
z2/4 + ... ;  

∼
θ | ∼z/2 + ... ;  ∼z → 0 . (31) 

 
Solutions (28) and (29) are defined in the limited 

region ⏐z⏐ ≤ π/2 and provide the asymptotic expressions 
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∼z → ± 
π
2 .  (33) 

These relations enable one to determine analytical 
dependences between the known size of the beam at the end of 
the path (the known allowable level of perturbations) and the 
required levels of physical parameters: absorbed power, air 
blow velocity, composition, state of the medium, and so on. In 
conclusion it should be noted that we proposed an effective 
algorithm for estimating the beam perturbations due to 
thermal blooming on complex laboratory paths including many 
segments with different conditions of propagation. Actually, 
this approach is also valid for optical beam propagation in the 
atmosphere. 
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