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In this paper we consider a closed numerical model of thermal blooming of the 
single–mode, partially coherent radiation propagating under conditions of self–induced 
convection. Study of compensations for the laser beam phase distortions is carried out 
using optical modes of the first, second, and third orders. Efficiency of compensation is 
estimated by a spectral criterion characterizing angular divergence of the beam at the 
cell exit. 

 
When a laser beam propagates in a closed volume 

containing a gas or liquid the convection flows appear in a 
medium, which affect the formation of the temperature field 
inducted by the beam. Since the analysis of thermal defocusing 
of the beam under conditions of self–induced convection is 
complicated, only a few papers (see, for example, Refs. 1–4) 
are devoted to the study of this problem in self–consistent 
statement. The prediction of the phase distortions, whose the 
laser beam undergoes in a cell with gas, and the possibility for 
their compensation procedure is of most important interest for 
applications. 

This problem was previously analyzed in Ref. 4. The 
phase distortions of the first and second orders were found in 
Ref. 4 to predominate at the cell exit for the collimated beam. 
They can effectively be compensated by the elastic mirror 
controled by four drives. However, the analysis4 of 
contribution of modes of a higher order than second one into 
the output phase of a beam seems to be insufficient. It is also 
important to elucidate the self–interaction peculiarities and to 
evaluate the limit possibilities of compensation for phase 
distortions of multimode radiation. The present paper is 
devoted to study of aforementioned problems. 

 
1. A MODEL OF RADIATION INTERACTION WITH A 

MEDIUM 
 
Let us assume that the light beam with an initial radius 

a
0
 propagates along a longitudinal axis of a horizontal gas cell 

z
0
 in length and l in transverse size. Based on the estimates 

made in Ref. 4, the influence of a boundary layer at front and 
back walls of the cell on distribution of the velocity and 
temperature over its volume can be neglected. As a result, a 
three–dimensional problem of hydrodynamics amounts to a set 
of plane (two–dimensional) problems, whose number coincides 
with the number of steps Nz of discretization over the 

longitudinal variable z. In each of the planes z = const the 
motion of viscous heat–conducting gas is described by a set of 
Navier–Stokes equations in the Boussinesq approximation, 
which is commonly written in the variables "current function 
ψ – vorticity ω" 

 

∂ω
∂t  + (V∇

⊥
) ω = 

1
Re Δ⊥

 ω + 
q

Re3 
∂T
∂x ; (1) 

 

∂T
∂t  = (V∇

⊥
) T = 

1
Pr Re Δ⊥

 T + f ; (2) 

 

Δ
⊥
 ψ = –ω . (3) 

In this system of equations the operators ∇
⊥
 and Δ

⊥
 are 

taken with respect to the transverse coordinates x and y, 
while the gas velocity V consists of the two components Vx 

and Vy, related to the current function by the relationships 

Vx = ∂ψ/∂y, Vy = – ∂ψ/∂x. For dimensionless variables, 

appearing in Eqs. (1)–(3) the commonly accepted 
normalization was used (see, for example, Ref. 4). The basis 
for the above normalization is the characteristic velocity of 
motion of a medium in the regime of developed convection: 

 
Vc = ν q1/3 / a

0
 , (4) 

 
where q = α I

0
 a

0
5
 β g/(ν3

 ρ
0
 Cp) is the dimensionless thermal 

system. The remaining designations in Eqs. (1) and (2) are 
the following: Re = a

0
 Vc/ν is the Reynolds number, 

Pr = ν/χ is the Prandtl number, and f is the function 
characterizing the profile of laser beam intensity. 

In the quasioptical approximation of the diffraction 
theory the light beam propagation is described by the 
dimensionless equation with reference to a complex slowly 
varying amplitude of a light wave 

 

2i 
∂E
∂z  = Δ

⊥
E + RTE , (5) 

 

where R is the nonlinearity parameter,5 proportional to the 
beam power P

0
 and to the time of radiation interaction with 

the medium τ
ν

 = a
0
/Vc in the stationary convection regime. 

Thus, the beam and the medium influence each other by the 
perturbation field of temperature T and the profile of thermal 
source f = ⏐E⏐2 and such a mutual influence is determined by 
the four parameters of similarity: R, Re, Pr, and q. 

At the cell entrance (at z = 0) a boundary condition is 
given for the complex amplitude E: 

 

E(x, y, 0, t) = E
0
(x, y) F(t) exp [i U(x, y, t)] , 

 

where E
0
 is the profile of beam amplitude, F is the temporal 

envelope curve of a light pulse, and U is the phase profile. 
When analyzing the thermal blooming of single–mode 
radiation we prescribe E

0
 in the form of Gaussian function 

 

E
0
 = exp [– (x2 + y2)/2] , (6) 

 

while U we take to be equal to zero (a collimated beam). In 
the multimode regime the radiation is assumed to have  
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Gaussian statistics with the function of mutual coherence 
of the form: 

 
Γ

2
(x, y, x′, y′, 0)

 
= 

= exp
⎩
⎨
⎧

⎭
⎬
⎫

– 
1
2 (x

2
 + y2

 + x′2 + y′2) + 

Nc

2  [(x – x′)2
 + (y – y′)2] , (7) 

 
where Nc = a

0
2/rc0

2  is the number of inhomogeneities in the 

initial beam cross section determining the transverse modes 
and rc0 is the initial correlation radius. In the numerical 

experiment the random realizations of beam amplitude at 
the entrance into the medium are given by spatial 
distributions of real and imaginary parts 
 

E
~
(x, y, 0, t) = u

∼
(x, y, t) + i ν

∼
(x, y, t) . (8) 

 

To simulate the random fields u
∼
 and ν

∼
 , the method of 

frequency sample6 was used with subsequent averaging over 
100 realizations at each temporal step. 
 
2. ANALYSIS OF LIGHT FIELD AT THE CELL EXIT 

AND CORRECTION FOR PHASE DISTORTIONS 
 
The spatial radiation structure in the plane of the cell 

exit window (z = z
0
) should be characterized by the spectral 

criterion 
 

J
Ω
(t) = 

1
4π P

0

 ⌡⌠
 

 
 ⌡⌠

 

 
 
Ω(kx, ky) ⏐E

≈
(kx, ky, z0

, t)⏐2 dkx dky, (9) 

 

playing the role of relative contribution of light power, 
concentrated at a fixed solid angle Ω. Here kx and ky are the 

projections of the wave vector onto the plane perpendicular to 

the direction of beam propagation and E
≈
 is the spectrum of a 

complex amplitude of a wave. Under conditions of strong 
fluctuations of light field it is also convenient to use the 
integral criterion: 

 

J(t) = ⌡⌠
0

t

 
 
J
Ω 

(τ) dτ , (10) 

 

where t is the observation time. In the numerical experiments 
the solid angle Ω was chosen in such a way that in the absence 
of nonlinear distortions the value of the criterion J

Ω
 limited by 

diffraction was 0.5. 
To organize the control over wave front of output 

radiation φ(x, y, t) in order to decrease its angular divergence 
we shall use the expansion of φ minus the constant component 
using the system of lowest optical aberrations and separating 

out the residual distortions 
∼
φ in an explicit form 

 

φ(x, y, t) = φ
N
(x, y, t) + φ

∼
(x, y, t) , (11) 

 

where 
 

φ
N
(x, y, t) = ∑

k=1

N
 
 
ak(t) Zk(x, y) (12) 

 

is the phase low–mode components (N ≤ 9), Z
1
 = x, Z

2
 = y, 

Z
3
 = 2 p2 – 1, Z

4
 = x2 – y2, Z

5
 = xy, Z

6
 = (3 p2 – 2) x, 

Z
7
 = (3 p2 – 2) y, Z

8
 = (x2 – 3 y2) x, Z

9
 = (y2

 – 3 x2) y,  

and ρ = x2 + y2, the coefficients of expansion (12) in basis 
are determined by the formulas  

 

ak(t) = 
1

⎢⎢Zk.⎢⎢
 ⌡⌠

 

 
 ⌡⌠

 

 
 
φ(x, y, t) Z

k
(x, y) dx dy ,  

 

where ⎢⎢Zk⎢⎢ is the norm of k th mode. 

The nonlinear distortions obtained by a beam in the 
cell is proposed to be minimized in real time by subtracting 
of its low–mode component φN(x, y, t) from the running 

output phase φ(x, y, t). 
Depending on the radiation conditions the quality of 

correction is conveniently estimated from improving the 
spectral criterion J

Ω
(t) and from relative increasing the 

integral criterion 
 

η(t) = J(t) / J
without

(t) , (13) 
 

where J
without

(t) is the running value of the criterion 

without control. 
 

3. RESULTS OF NUMERICAL SIMULATION 
 
3.1 Dynamic structure of nonlinear distortions and 

their composition of modes. Phase nonlinear distortions of 
laser radiation under conditions of self–induced convection 
were calculated over a wide range of values of the heat release 
parameter (q = 103 ... 105) corresponding to the change of the 
nonlinearity parameter in the range of 200 ≤ ⏐R⏐ ≤ 4500. 

An investigation of composition of phase distortion 
modes has shown that at different values of the heat release 
parameter the behavior of lowest–order aberrations is similar. 
These aberrations differ mainly in the amplitude and time of 
determination of a stationary temperature field τ

stat
 (Table I). 

In this case maximum distortions are attained at t = τ
stat

/2. 

As an example, Fig. 1 shows the time dependences of 
expansion coefficients of beam phase in basis (12). 
 

TABLE I. Stationary values of coefficients of expansion 
of output phase in basis (12) and times of determination 
of stationary temperature field at different values of q.  
 

q τ
stat

/τ
ν

Tilt, 
a

2
 

Defocusing, 
a

3
 

Astigmatism, 
a

4
 

Coma, 
a

7
 

Coma, 
a

9
 

103
 30 1.56 1.1 –0.31 –0.29 0.25 

104
 15 3.39 2.37 –0.49 –0.75 0.75 

105
 7.8 7.88 5.74 –0.79 –1.77 1.59 

 

 
 

FIG. 1. Time dependences of expansion coefficients of a 
beam phase at the cell exit in basis of lowest aberrations 
at q = 104. Figures at the curves correspond to numbers of 
modes in (12). 
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The results of numerical experiments based on 
correction of mode of phase nonlinear distortions are 
presented in Fig. 2 for the heat release parameter q = 104. 

 

 
 

FIG. 2. Time dependences of the spectral criterion J
Ω
 at 

modal compensation for beam phase distortions. Without 
compensation (1), compensation along slant path (2), 
compensation for the modes of the first and second orders 
(3 and 4), and for the modes of the first, second, and 
third orders (5 and 6). 

 

It can be seen that the main contribution to distortions 
is made by a lens distortion (in the stationary regime the 
elimination of this aberration results in the 40% 
improvement in spectral criterion (9)). The effect of 
aberrations of the second order is somewhat less (the 15% 
improvement of the criterion) and the elimination of coma 
leads to an increase of the spectral criterion by 10%. The 
regularity determined, namely, "saturation" of compensation 
quality with increase of order of controllable modes is 
confirmed by the calculations at other values of q 
(Table II). At the same time, the analysis of this table 
indicates that the spatial structure of phase distortions is 
complicated with increase of the heat release parameter. 
This results in the increase of relative contribution of 
highest aberrations, which, in principle, cannot be 
eliminated by means of modal corrector (12). 
 

TABLE II. Relative contribution of different modes to the 
stationary phase of a beam at the cell exit determined by 
the spectral criterion J

Ω
. 

 

q Tilt, 
% 

Mode of the  
second order, % 

Mode of the  
third order, % 

Highest modes, 
% 

103
 45.8 31.7 5.8 16.7 

104
 36.1 28.2 8.7 27.0 

105
 7.2 20.6 10.3 61.9 

 

3.2 Limiting possibilities of compensation for phase 
distortions of multimode radiation. Since a reliable analysis 
of thermal blooming of multimode radiation demands the 
laborious statistical processing the only value of the heat 
release parameter was taken in calculations, namely, q = 104. 
The quality of correction was estimated using the parameter 
η(t) from Eq. (13) with averaging of output light field over 
100 realizations. The ratio of the initial correlation radius to 
the initial beam radius r

c0
/a

0
 being characteristic of degree of 

input radiation coherence varies from 1/3 to 2. Figure 3 shows 
the dynamic dependences of the parameter characterizing the 
relative improvement in the integral criterion η(t) for different 
values of the ratio r

c0
/a

0
 at a control over complete basis (12) 

composed of nine modes. It is clear that the efficiency of phase 
compensation decreases with decrease of the initial radius of 

coherence and at r
c0
/a

0
 = 1/3 the parameter η does not 

exceed 1.2 over entire time interval. It should be noted that in 
the case of single–mode radiation under the same conditions of 
propagation we succeeded in improving of the integral 
criterion almost by a factor of two. 

 

 
 

FIG. 3. Time dependences of the quality parameter η of 
compensation for thermal blooming of multimode radiation at 
different values of the ratio r

c0
/a

0
 indicated near the curves. 

 

The calculations made at different quantity of 
controllable modes indicate that in the case of thermal 
blooming of multimode radiation the saturation effect of 
correction quality is also observed with increase of 
dimensionality of a control basis (Fig. 4). The parameter 
r
c0

/a
0
 is the main factor determining in this case the 

relative contribution of irremovable phase distortions. 
 

 
 

FIG. 4. The parameter of compensation quality η(10τv) 

depending on r
c0
/a

0
. Compensation along slant path (1), 

compensation for the modes of the first and second orders (2), 
and for the modes of the first, second, and third orders (3). 
 

The work has been carried out in close collaboration with 
the International Laser Center of Moscow State University. 
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