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The stability of an earlier obtained solution to a phase problem in optics is 
investigated with respect to the small random errors in measured intensity 
distributions. Based on calculations of the signal–to–noise ratio, the feasibility of 
calculational formulas for creation of the phase reconstruction algorithms implemented 
in wave front sensors and systems of optical control is analyzed.  

 

In Ref. 1 the author derived an analytic solution to the 
problem on reconstruction of the real optical wave phase 
S(x, z) from the measured intensity I(x, z) distributions. 
The solution was based on the parabolic approximation of 
wave equation2 for the field U(x, z) depending solely on 
the transverse coordinate.  

Advantages of analytic solution of any inverse problem 
over numerical solution are obvious for theoretical analysis. 
However, the feasibility of the derived exact relations is 
frequently limited due to the measurement noise. The aim of 
the present paper is to study the stability of the obtained 
solution to the phase problem against the small random 
errors in the measured intensities. The analysis is based on 
calculation of the phase fluctuation variance. In accordance 
with Ref. 1, the phase can be written as  

S(x, z) = S(0, z) + ⌡⌠
0

x

 dx′ 
∂ S(x′, z)

∂ x′  ,  (1) 

 
where   

∂ S(x′, z)
∂ x′  = 

k
2 {I(x′, z)}

–1 ⌡⌠
–∞

+∞

 sgn(x′′ – x′) 
∂
∂ z I(x′′, z) dx′′ (2) 

 
is the local tilt of the phase front, k is the wave number, 
sgn(x) is the signum function. Further we are interested in 
the correlation function of the random phase field  
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The horizontal bar denotes averaging over random 
realizations. The phase is random owing to the fact that the 
intensity I(x, z) is measured with a certain error and 
instead of I(x, z) the following function is known:  
 
I
r
(x, z) = I(x, z) + δ

I
(x, z) ,  (4) 

 
where δ

I
(x, z) is the random error caused by an 

imperfection of recording facilities. Let us refer to this 
additive term as the measurement noise. The error δ

I
(x, z) is 

assumed to be uniform random variable with the mean value  

d
I
(x, z)  = 0 ,  (5) 

 

and the correlation function  
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Below we assume that the intensity fluctuations are small as 
compared with the mean value  
 

δ
I
(x, z)  � I(x, z) .  (7) 

 

Moreover, the intensity I(x', z) is considered to meet the 
condition  
 

I(x′, z) > 0 ,  x′ ∈ [0, x] ,  
 

with the exception of phase front dislocations.3  
On the basis of the above–made assumptions the phase 

correlation function has the form  
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where 
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By transforming to new coordinates z
1
 – z

2
 = z and 

z
1
 + z

2
 = z~ in Eq. (9), we obtain   
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Let us define the one–dimensional spectral power density 
V(x, κ) by the relation   
 

K
I
(x, z) = 

1
2π ⌡⌠

–∞

+∞

 V(x, κ) e–ijz
 dκ .  (11) 

 
In conformity with the properties of the Fourier transform, 
we can then write   

∂2

∂ z2 KI
(x, z)⎮

z=0
 = – 

1
2π ⌡⌠

–∞

+∞

 κ2 V(x, κ) dκ . (12) 

 
The longitudinal derivative in Eq. (2) is assumed to be 
calculated from the measured intensity distributions in two 
planes, which are Δz apart, with subsequent formation of 
the finite difference. The linear interpolation of the function 
I(x, z) over the variable z corresponds to this operation. 
The frequency characteristic of such a transform is well 
known4  
 
H(κ) = {sin(κ Δz/2) / (κ Δz/2)}2 ,  – ∞ < κ < ∞ . (13) 
 
On account of signal filtering  
 

K
I
(x, z) = 

1
2π ⌡⌠

–∞

+∞

 V(x, κ) ⏐H(κ)⏐2 e–ijz
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and we have instead of Eq. (10)  
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In the specific calculations we use the function  
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The measurements in different planes are considered to be 
independent. At first, the case of the white noise is 

considered when l
é
, l

´
 → 0, σ2

I
 = N

0
/(2πl

⎢⎢
l
⊥
), and N

0
 is the 

spectral power density. After integrating Eq. (14) over the 
variable k we have  
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It is obvious that the infinite integration in Eq. (16) 

gives the infinite variance of the random phase front tilts 
due to the measurement noise. Really the integration limits 
are finite in the measurements. Let us denote the lower and 
upper limits by – β

x
 and β

x
 , respectively. The most natural 

limits are dictated by the optical beam radius. The 
integration between the finite limits of Eq. (16) yields  
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⏐x′
1,2

⏐ ≤ β .  
 

Assuming that  
 

I(x′, z) = I(0, z) ,  0 ≤ x′ ≤ x , 
 

we obtain in conformity with Eq. (8) for the correlation 
function of phase fluctuations  
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By substituting the coordinates and changing the order 
of integration in Eq. (18), we have  
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For the phase fluctuation variance we derive  
 

σ2
S
(x, z) = K

S
(x, x; z~, z~) = 

 

= k2
 N

0
 {I(0, z)}–2 (Δz)–3

 { }β
x
 x2 – 

⎢x⎢3

3  , ⏐x⏐ ≤ β
x
 . (20) 

 

Consequently, the phase fluctuation variance 
reconstructed from the measured intensity with additive 
noise increases linearly with the increase of the 
measurement base and reaches the maximum  
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S
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x
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3 k

2
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 β3
x
 . 

 

It is natural to assume that if the intensity fluctuation 
field includes the areas of anticorrelation, where the 
correlation function is negative, the increase of the 
transverse base causes the spatial averaging of the phase 
fluctuations.  

Equations (17)–(20) indicate that the reconstruction 
problem is ill–posed (unstable), which is connected with 
differentiation of I(x, z). It manifests in an infinite increase 
of σ2

S
 when the recording planes draw close together.  

To calculate σ2
S
(x, z) for the arbitrary spectral power 

density of noise we rewrite formula (14) taking into account 
the finite transverse base  
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Now we separate out the convolution transform in 

Eq. (21)  
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where Θ(x) is the Heaviside function, act on this 

convolution by the direct F
∧
 and inverse F

∧
 
–1 Fourier 

operators, and make use of the direct convolution theorem5  
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Here  

F
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is the direct Fourier transform over the transverse 
coordinate. The inverse Fourier transform is written in the 
form  
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Let us denote the two–dimensional spectrum of the noise 
fluctuations by  

F
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holds, after integration of Eq. (21) over the variable x′
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Integrating Eq. (24) over the variables x′

1
 and x′

2
 and 

taking the optical beam intensity in the interval of phase 
reconstruction as being constant, we have  
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As an example let us choose the correlation function in 

the form of Eq. (15) and assume that l
⎢⎢
 → 0. The spectral 

power density in this case is written in the form  
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Calculating the integral in Eq. (25), we obtain  
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, x ≤ β
x
,   (26) 

where Ω
b
 = 

kβ2
x

Δz  and 
1
F

1
(α, γ; x) is the confluent 

hypergeometric function.  
The asymptotic estimation of Eq. (20) follows from 

Eq. (26) as l
´
 → 0. It is of interest to calculate the phase 

distribution of an optical beam for the given values of Δz 
and β

x
 and to estimate the influence of these parameters on 

the reconstruction quality. The choice of the finite values of 
Δz and β

x
 permit us to restrict the increase in the 

fluctuation variance caused by the ill–posed inverse 
problem. However, the limitation on the transverse base of 
measurements β

x
 and the choice of the finite value of Δz in 

the calculation of the derivative dI(x, z)/dz influence the 
quality of reconstruction of the phase itself.  

Now we calculate S(x, 0) for the Gaussian beam  
 

U(x, 0) = U(0, 0) exp 

⎩
⎨
⎧

⎭
⎬
⎫– 

1

2a2
t

 x2 – i S(x, 0)  (27) 

 

with the phase distribution  
 

S(x, 0) = – 
k

2j(0) x
2 .  (28) 

 

By substituting Eq. (27) into Eq. (1), taking into 
account the finite limits of integration in Eq. (2), and 
replacing the derivative by the finite difference {I(z + Δz) –
 I(z)}/Δz, we obtain the regularized inversion formula  
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Ω
a
 = 

ka2
t

Δz  ,  γ = 
β
x

a
t

 . 

 
For the optical wavelengths and laser beams the 

inequality Ω � 1 is fulfilled, and Eq. (29) is inverted in the 

following way:  
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For the phase fluctuation variance in the framework of 

the model of white noise the following formula is obtained:  
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β
x

a
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Here  

η
I
 = 

I
0

N
0
 (Δz)–1/2

 a–1/2
t

 (32) 

 
is the SNR on the beam axis, I

0
 = I(0, 0),  

 

erf(x) = 
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π
 ⌡⌠

0

x

 e–t
2
 dt ,  

 

erf i(x) = 
2

π
 ⌡⌠

0

x

 et
2
 dt  

 
are the error functions of the real and imaginary arguments. 
To estimate the feasibility and efficiency of phase 
distribution reconstruction against the noise background, we 
make use of the generalized criterion of the SNR  

η
S
 = ⎪
⎪

⎪
⎪ S

R
(x, z) / σ

S
(x, z)   .  

 
In its turn, for the given η

S
 the maximum admissible 

value of N
0
 can be calculated for the specific values Δz and 

β
x
, or the optimal values of Δz and β

x
 can be found using 

the model phase distribution for the given level of 
fluctuations as well as the beam intensity starting from 
which the phase reconstruction is possible.  

On the basis of Eqs. (29)–(31) the signal–to–noise 
ratio variance was numerically analyzed when 
reconstructing S(x, 0). The Rayleigh criterion was taken as 
a reconstruction performance criterion. By this criterion  
 

δS = ⏐S
R
(x, 0) – S(x, 0)⏐ ≤ 

π
2 . (33) 

 
Results of calculation for the optical beam with the 
parameters ϕ(0) = 1 m, a

t
 = 0.05 m, λ

1
 = 0.63⋅10–6m, 

λ
2
 = 10.6⋅10–6m, and β

x
 = 0.25 m are shown in Figs. 1–4.  

Figures 1 and 2 illustrate the quality of S
R
(x, 0) 

reconstruction. The general view of the reconstructed 
wavefront is shown in Fig. 1. Figure 2 shows in more detail 
the aberration pattern, obtained by substitution of exact 
solution (1) by regularized solution (29). All the curves for 
Δz = 10–4, 3⋅10–4, 5⋅10–4, and 10–3 m, which can be clearly 
distinguished in Fig. 2 on the wavelength scale, are 
indistinguishable in the general view (Fig. 1). The dashed 
curve corresponds to the level λ/4. All the lines of Fig. 2 
are broken due to the errors in numerical integration and 
differentiation. The behavior of these lines is characteristic 
of the ill–posed problems and reflects their contradiction. 
On the one hand, stringent criterion (32) dictates 
shortening of the transverse base up to Δz = 0.1 mm; on the 
other hand, this leads to an increase in σ2

S
 and, as a result, 

to a decrease of the signal–to–noise ratio. The 
corresponding trends in the behavior of σ2

S
 and η

S
 are shown 

in Figs. 3 and 4. The value of η
S
 normalized by I

0
/ N

0
, in 

m–1, is laid off as ordinate. Such a normalization allows us 
to identify the diffraction (geometric) and energy 
parameters entering into η

I
 given by Eq. (32) and to obtain 

the "universal" dependences.  
 

 

 
FIG. 1. The general view of the reconstructed mean phase 
of a single–mode Gaussian beam for different longitudinal 
bases of measurements Δz: 1) exact values of the phase for 
Δz = 10–4, 3⋅10–4, 5⋅10–4, 10–3, 10–2 m; 2) Δz = 10–1 m; 
and, 3) Δz = 5⋅10–1 m, γ = 5.  
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FIG. 2. Deviation of the reconstructed values of the 
phase from the model ones. Solid line is for 
λ

1
 = 0.63⋅10–6 m, the symbols �, �, �, and � denote 

the phase deviation for λ
2
 = 10.6⋅10–6 m and Δz = 10–4, 

3⋅10–4, 5⋅10–4, and 10–3 m, respectively. Δz = 10–4 (1), 
3⋅10–4 (2), 5⋅10–4 (3), and 10–3 m (4).  
 

 
 

FIG. 3. The variance of the phase fluctuations 
reconstructed over the beam cross section. Δz = 10–4 (1), 
3⋅10–4 (2), 5⋅10–4 (3), 10–3 (1), and 10–2 m (5).  
 

 

 
FIG. 4. SNR as a function of the observation point 
coordinates. Curve numbering is the same as in Fig. 3.  
 

Although S
R
(x, 0), σ2

S
, and η

S
 have been calculated 

for the specific values of a
t
 and ϕ(0), the results can be used 

to estimate the corresponding quantities for the other values 
of these parameters. To evaluate η

S
, one can start from the 

following asymptotic relation:  
 

η
S
(x) = 

1
2 {ϕ(0)}–1

⎝
⎛
⎠
⎞x

a
t

2

 (Δz)3/2
 a1/2

t

⎩
⎨
⎧

⎭
⎬
⎫

γ 
⎝
⎛
⎠
⎞x

a
t

2

 – 
1
3 ⎝
⎛
⎠
⎞x

a
t

3 1/2  
I
0

N
0

 ,  x ≤ a
t
 .  

 
Apparently, the accuracy of the wavefront reconstruction 

for λ
1
 = 0.63⋅10–6 m satisfying criterion (32) is difficult to 

attain since it requires to perform measurements with 
practically unachievable ratio of the intensities of optical wave 
to noise in order to meet the condition η

S
 > 1. For a He–Ne 

laser, for example, with the output power P
0
 = 50 kW the 

threshold η
S
 = 1 is reached when I

0
/ N

0
 ∼ 108 m–1. This 

means that the spectral power density of noise must meet 
the requirement N

0
 < 4.1⋅10–15 W2/m2. For λ

2
 = 10.6⋅10–

6 m the Rayleigh criterion has been attained already for 
Δz = 1 mm. In this case the threshold η

S
 = 1 is reached 

for I
0
/ N

0
 = 10–6 m–1. For example, for N

0
 = 10–

4 W2/m2 this means that I
0
 = 104 W/m2. Such intensities 

are not unique for the radiation of modern CO
2
–lasers.  

Thus to measure wavefront aberrations which are 
smaller in magnitude than the wavelength in the visible 
range, it is unlikely to use measurement techniques based 
on solving the inverse problems. Here the techniques for 
direct measurements are more effective. For less stringent 
requirements for the accuracy (all depend on the specific 
problem) as well as in the near and especially far IR 
ranges the use of the above–considered techniques for 
phase measurement is justified especially if the object 
under study is the wavefront topology and transformation 
of phase surfaces in the process of radiation propagation, 
investigation of which with the use of interferometric 
techniques6 is apparently insuperable problem.  
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