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In this paper we analyze some results of recent investigations of theoretical 
models and experimental data on the probability density of the intensity and flux 
fluctuations of optical radiation in the turbulent atmosphere. In doing so we consider 
the K–, universal, Beckman, and 1–K distributions. We also analyze the errors in 
determining the highest normalized moments of the distributions and the influence of 
the instrumental dynamic range on the estimate of the probability density of 
fluctuations. As our comparative analysis of experimental data and model distributions 
has shown, the K–distribution is asymptotically more adequate for saturated 
fluctuations (β0 ≥ 10) than the lognormal distribution and in addition approximates 

well the experimental data in the case of reflection of radiation from an array of 
corner–cube reflectors during propagation of radiation in the rain at large optical 
thicknesses. The fluctuations of the light flux reflected from specular objects and 
received by a distributed aperture practically always obey the lognormal law. 

Experimental studies allow us to conclude that for arbitrary values of the 
parameter β0 

, characterizing the conditions of light propagation, superposition of 

fields whose amplitudes obey the K– and lognormal distributions, is preferable for the 
description of experimental data. 

 
1. INTRODUCTION 

 
Probability density of the intensity and flux 

fluctuations of optical radiation is the most complete 
single–point statistical characteristic, which determines 
the reliability and noise proofing of the optical 
communication systems1–3 as well as the noise of the 
goniometric and range–finding optical systems operating 
in the atmosphere.4 Probability density for weak intensity 
fluctuations was studied in detail by V.I. Tatarskii,5 
while the case of strong fluctuations was considered in 
Refs. 6–8. Currently some new experimental data have 
been obtained, and new theoretical models of the 
probability density of the optical wave fluctuations have 
been developed. This problem is of great interest because 
of its practical importance1–4 as well as due to the fact 
that now there is not any reliable theoretical model 
describing the probability density over the whole variety 
of turbulence conditions at least for a forward 
propagation path, while the experimental data give no 
way to prefer one or other model for strong intensity 
fluctuations. Only a small number of papers considered 
the problem of the intensity and light flux fluctuations in 
the case of reflection in the turbulent atmosphere as well 
as in the rain. 

In the monographs and reviews devoted to the 
intensity fluctuations6,7,8 some problems concerning the 
measurement accuracy and being of great importance for 
the experiments have still received only insufficient 
study. 

In this paper some available theoretical models of 
propagation and real accuracy of measuring the statistics 
of fluctuations are analyzed. Experimental data (obtained 

mainly by one of the co–authors) are compared with the 
theoretical models of fluctuations developed in recent 
years. 

 
2. THEORETICAL MODELS OF PROBABILITY 

DENSITY  

OF THE LIGHT INTENSITY FLUCTUATIONS IN THE 

CASE OF RADIATION PROPAGATION THROUGH  

THE TURBULENT ATMOSPHERE 
 
When radiation propagates through the medium with a 

random field of the refractive index, some part of the 
energy flux is scattered and the type of function describing 
the probability density of the intensity fluctuations is 
determined by scattering mechanism. The model of a 
single–ray propagation, allowing for the radiation being 
forward–scattered by the inhomogeneities located on the 
receiver–transmitter axis, can be considered as a simple 
example. If the resultant field is the sum of the great 
number of independently forward–scattered components, 
then applying the central limit theorem to the expression 
for logarithm of the wave field amplitude, one can conclude 
that both the amplitude and the intensity distributions are 
lognormal 

 

P(I) = ( 2πσ I)–1 exp [– (1/2σ2) (ln I – ξ)2], (1) 

 

σ = ln(1 + β2),   ξ = ln[< I>/(1 + β2)1/2 ] , 
 
where β2 = (< I 

2> – < I>2)/< I>2 is the normalized variance 
of the intensity I, in other words, the flicker parameter, and 
angular brackets denote an ensemble averaging. This model  
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was first proposed and substantiated by V.I. Tatarskii5 for 
plane waves and was further developed for the other ray 
geometry, in particular, for spherical waves.8,9 There is 
sufficiently large experimental data base6,10,11 confirming 
the lognormal statistics for the amplitude and radiation 
intensity. However, both the theoretical analysis and the 
experimental results show that this model can be applied 
only under specific propagation conditions. Really, a path 
length must be sufficiently long to ensure the applicability 
of the central limit theorem and at the same time 
sufficiently short to guarantee that the multiray effects due 
to scattering by off–axis vortexes contribute only 
insufficiently to the resultant field. The contribution of 
these effects is also determined by the optical strength of 
the atmospheric turbulence. The universal parameter 
characterizing the propagation conditions on the path is (see 
Ref. 6) 
 
β

0
( L) = 1.23 C2

n k
7/6 L11/6, 

 
where Cn

2 is the structural characteristic of the refractive 

index field, L is the path length, and k = 2π/λ is the wave 
number. One can say that the intensity fluctuations are 
described well by the lognormal distribution for weak 
fluctuations when β

0
 < 1 (in this case the path length L 

must be much longer than the outer scale of turbulence L
0
 

(L
0
 � L)). 

Some authors tried to extend the lognormal model over 
the strong fluctuations12,13,14 to approximate the 
experimental distribution by a modified lognormal 
distribution15 but they failed since they remained within the 
scope of the model of a single–ray propagation. Moreover, 
the lognormal model predicts infinite growth of the 
intensity fluctuations as β

0
 increases,16 but this is not the 

case. In fact, the fluctuations increase only up to certain 
maximum values and then decrease gradually with further 
increase of β

0
. 

For strong fluctuations (or, more specifically, in the 

regime of saturation) when β
0
 � 1, the resultant field is the 

superposition of multiply scattered waves. Under 
assumption that the components of the resultant field are 
statistically independent and numerous, the application of 
the central limit theorem results in the Rayleigh 
distribution of the total amplitude and, therefore, the 
exponential distribution of the intensity  

 
P(I) = < I>–1 exp(–I/< I>) . (2) 
 

From an asymptotic analysis of the behavior of 

normalized intensity moments17 <I
∼

> the conclusion was 
drawn that the exponential distribution 

 

<I
∼n> = n! [1 + 0.21 β

0
–4/5 n(n – 1)]  

 
is applicable. 

In the limiting case (β
0
 → $) this expression leads to 

the relation for the intensity moments corresponding to the 
exponential distribution. However, in the real atmosphere 
β

0
 takes the finite values; moreover, for the atmospheric 

turbulence with a wide range of inhomogeneity scales the 
components of the scattered fields prove to be partially 
correlated because of large inhomogeneities resulting in the 
deviation of the total intensity distribution from the  

exponential law. This model can be considered only as a 
limiting case for the very strong fluctuations, prerequisites 
to the formation of which in the atmosphere have not yet 
been clear. 

The most widespread distribution for the saturation 
region is the so–called K–distribution18–21  
 

< I>P( I ) = (2/Γ( y))y 
(y+1)/2 I 

(y–1)/2
Ky–1 

[2( I y)1/2 ], (3) 
 

y
 
= 2/(β2 –1),  y > 0, 

 
where Ky(z) is the modified Hankel function.22 It was 

derived under assumption that the radiation is scattered by 
the object population obeying the binomial distribution in 
the limiting case of the great average number of objects, 
and since the scattered field can be represented by a two–
dimensional vector, the results obtained by the method of 
wandering in the plane with binomial distribution of the 
number of steps can be applied to the scattering process. 
The limiting case in solving this problem is the K–
distribution. For very large values β

0
 → ∞ when the 

parameter β → 1, it can be reduced to the exponential 
distribution. Since this distribution has been introduced, as 
shown in Refs. 18, 20, and 23, it is very useful in modeling 
of non–Gaussian statistical characteristics of radiation 
scattered by such different objects as the Earth's and sea 
surfaces as well as by the extended and localized 
turbulence, but its range of applicability is limited by the 
condition for the flicker parameter β2 ≥ 1. This makes it 
impossible to use this distribution for weak turbulence. 
Naturally, some attempts were undertaken to extend the 
K–distribution over this region. In particular, the model of 
generalized K–distribution was proposed by R. Baracat24 
and considered also in Refs. 25 and 26. According to this 
model  
 

< I>P( I ) = 
2 N

Γ(N)( )
N
ξ
 

I
< I>

(N–1)/2

( )ξ + 
υ2

4

(N+1)/2

 × 

 

× I
0 
⎩
⎨
⎧

⎭
⎬
⎫

υ 
⎣
⎡

⎦
⎤( )ξ + 

υ2

4  
I

< I>

1/2

 KN–1
 × 

 

× 
⎩
⎨
⎧

⎭
⎬
⎫

2 
⎣
⎡

⎦
⎤ξ N( )ξ2 + 

υ2

4  
I

< I>

1/2

 , (4) 

 
ξ = 1 + υ2/4 N, 
 
where N is the number of scattering centres, υ is the 
parameter describing the phase fluctuations, and I

0
(x) is the 

zero order Bessel function. In this model the vector of a 
scattered electric field is the result of random wandering in 
a plane with the sense of displacement corresponding to a 
nonuniform phase distribution. Baracat assumed that the 
random phase obeys the Mises distribution24 and the 
average number of steps tends to infinity. Resultant 
probability density of the intensity fluctuations obeys the 
K–distribution for the strong turbulence, while for the 
weak turbulence it approaches a functional form identical to 
the generalized Rice distribution and although, as shown in 
Ref. 26, a simple generalization of the Mises distribution 
over n measurements is not evident, the distribution 
proposed by Baracat is of great interest. 

Generally the statistical models developed for the 
intensity fluctuations are based on the assumption that the  
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atmospheric turbulence is stationary, uniform, and isotropic. 
Even if uniformity and isotropy are reasonable assumptions 
for many turbulence conditions, the assumption of 
stationarity can be valid only for very short periods of time 
during which the turbulence parameters remain significantly 
unchanged on the propagation path. For long periods of 
time required for experimental measurements these 
parameters of turbulence will probably fluctuate in a 
random way. This fact is responsible for the turbulence 
intermittance.27 Taking into account these arguments, 
Andrews and Phillips28,29 tried to generalize the  
K–distribution for weak fluctuations by means of 
introducing the I–K––distribution  

 

P( I) = 
 

=

⎩⎪
⎨
⎪⎧(2α/b

0
)( I/A)α-1K

α-1
(2 A α/b

0
)I

α-1
(2 α I/b

0
),I < A2

,

(2α/b
0
)( I/A)α-1I

α-1
(2 A α/b

0
)K

α-1
(2 α I/b

0
),I > A2

,

 

(5) 
where α is the parameter determining the number of 
scatterers, b

0
 is the absolute average intensity of a random 

component of an optical field, Iv(z) and Kv(z) are the 

modified Bessel functions of the first and second kind, 
respectively.22 This distribution was obtained from 
representation of an optical wave by a bistochastic random 
process. Taking into account nonstationarity of the 
atmospheric turbulence, the optical field intensity was 
considered as an arbitrary random process obeying the 
Rice–Nakagami distribution as predicted by the Born 
approximation. The effect of random fluctuations of the 
parameters of turbulence is modeled by random variations in 
the mean intensity or variance of the field. Thus by 
averaging the Rice–Nakagami distribution for gamma–
statistics of the fluctuating field variance, one can obtain 
the I–K–distribution as an absolute probability density for 
the intensity. Comparing the normalized moments of this 
distribution with their experimental values, the authors of 
the model obtained a good agreement for a wide range of 
variation of the parameter β

0
. The main problem in 

application of the I–K–distribution is the determination of 
the functional form of its parameters as well as their 
relations with the physical parameters of the turbulence and 
optical wave. A technique for adjusting the parameters 
proposed in Ref. 30 is only approximate and induces some 
uncertainty in this point. 

However, this model of the intensity fluctuations was 
first considered in Ref. 30 a in a physically more vivid 
representation. In this model the probability density P(I) is 
based on the concept of two types of scattering 
inhomogeneities, namely, small–scale inhomogeneities 
producing a normalized wave field and large–scale ones, 
which modulate the small–scale turbulence thereby 

denormalizing the total wave field. For β
0
2(L) � 1 the 

probability density obtained by averaging over both types of 
scattering can be written down in the following form:

 
 

P( I ) = ⌡⌠
0

∞

 P
1 
(I, < Il >) P

2
(< Il >) d< Il >, 

where P
1
(I, < Il >) =

 
< Il >

–1
 exp[–I/< Il >] is the local 

exponential function of the intensity distribution due to 
scattering by small–scale inhomogeneities, P

2
(< Il >) is the 

probability density describing the effect of large–scale 
inhomogeneities. From the physical viewpoint the intensity 
fluctuations depend on both the mean number of rays which  

arrived at the point (effect of small–scale inhomogeneities) 
and the variance of this number (effect of large–scale 
inhomogeneities). 

For the spectrum of the turbulent fluctuations of the 
refractive index of the atmosphere obeying the 
Kolmogorov–Obukhov law in accordance with Ref. 30 b the 
probability density of the intensity can be represented in 
the following form: 

 

P(I)=

⎩⎪
⎨
⎪⎧
exp(–I)[1+0.724 β-0.8

0
(1–2 I+1/2 I2)], I ≤ β0.4

0
,

exp[–I(1–1/1.45β-0.8
0

 I)], β0.4
0

 ≤ I ≤ β0.8
0

,

1.06β0.24
0

 I-0.3 exp[–1.5β0.24
0

 I-0.7], I ≥ β0.8
0

.

 

(5a) 
 
This formula is compared with experimental data below; 
here we note only that P(I) in the form of formula (5a) 
does not satisfy the normalization condition and has 
discontinuities near the joints of the intervals of the 
argument variations. 

The models presented above describe the intensity 
fluctuations of the optical radiation mainly either for weak 
or saturated turbulence but at the same time they cannot 
adequately describe an intermediate rather wide region 
which is of greatest interest for practice. For this case in a 
number of papers it was suggested to use the so–called 
mixtures of distributions31 in which the field of optical ray 
at the receiving point was assumed to be formed by the two 
components 

 

A eiϕ =
 
A

1 
eiϕ1 + A

2 
eiϕ2, 

 

the first of which A
1
e
iz1 is due to forward scattering of 

radiation by the inhomogeneities located on the 
transmitter–receiver axis and obeys the lognormal 
distribution of the amplitude A

1
 and normal distribution of 

the phase ϕ
1
. The second component A

2
e
iz2 is due to 

multiple scattering by the off–axial inhomogeneities and 
obeys the Rayleigh distribution of the amplitude A

2
 and 

uniform distribution of the phase ϕ
2
. In particular, based on 

this model the authors of Ref. 32 proposed the Beckman 
distribution 
 

P(I)=
1

2πσI1
mI2

 ⌡⌠
0

∞
 

 

dI
1

I
1
 exp 

⎣
⎢
⎡

⎦
⎥
⎤

–
(ln I

1
 – mI1

)2

2σI1

2  – 

I + I
1

mI2

I
0

  
⎝
⎜
⎛

⎠
⎟
⎞2 II

1

mI2

, 

 (6) 
 
where σI1

 and mI1
 are the variance and mean value of the 

intensity logarithm of the lognormal component, 
correspondingly, mI2

 is the mean value of the intensity of 

the field Rayleigh component, I
0
(x) is the modified Bessel 

function of the first kind, while the authors of Ref. 33 
suggested to use the universal distribution 
 

P(I)=
1
2 ⌡⌠

0

∞

 z J
0
(z I )

1 

F
1
(M, 1; – 

cz2

4 M)1 

F
1
(m, 1; – 

bz2

2 m)dz, (7) 

 
c = < A2

1
>,  b = < A2

2
>,  

where 
1
F

1
(α, β, z) is the confluent hypergeometric 

function.22 The Beckman distribution was investigated in 
Ref. 32 in which the relation of its parameters with the  
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characteristics of the atmospheric turbulence and 
propagation path was found. However, these relations 
obtained with a phenomenological model are rather 
approximate and make it impossible to compare them 
correctly with the experimental data. The universal 
distribution was studied in Ref. 34. It was shown that this 
distribution cannot be reduced to the lognormal one for 
weak turbulence and significantly deviates from the 
experimental data in this region. A barrier to the 
application of the mixtures is the mathematical complication 
of these models. The point is that in contrast to all the 
above–mentioned two–parametric distributions, the 
probability density for mixtures depends on the three 
parameters, two of which characterize the distributions 
forming the mixture, while the third so–called parameter of 
mixture r determines their ratio r = < A

1
2>/< A

2
2>. Thus to 

compare these distributions with the experimental data it is 
necessary to match the first three moments of distribution 
with experimental moments, while independence of the 
third moment of the second one leads, in its turn, to 
uncertainty of finding the distribution parameters. 

So, we have the lognormal distribution for weak 
fluctuations, the K–distribution for saturated fluctuations, 
but for the intermediate range we have not yet found the 
distribution providing a good approximation for the 
experimental data. 

The case of reflection from a spatial array of corner–
cube reflectors which are used, for example, in laser 
detection and ranging of space objects35 is of great practical 
interest. The fluctuation characteristics of intensity and 
radiation flux under the joint action of the atmospheric 
turbulence and interference of waves reflected from 
individual reflectors forming the array were studied in 
Ref. 36, but the expression for the probability density of 
the intensity fluctuations obtained in it gave the variance of 
the intensity fluctuations that does not agree with 
experimental data.34 Apparently, in accordance with the 
model description, the K–distribution will approximate the 
intensity fluctuations quite well provided that the number 
of corner–cubes (scattering centers) is sufficiently large. 

 
3. SOME ASPECTS OF EXPERIMENTAL 

MEASUREMENT OF THE PROBABILITY DENSITY 

OF THE INTENSITY FLUCTUATIONS 
 
To estimate proximity of the distribution function of a 

random process to a certain theoretical law, one can use the 
description of this process by the sequence of its moments.37 
This is most often used for the processes of propagating the 
optical waves,38–41 apparently, due to the fact that until 
recently the moments could be measured in a rather simple 
way. In addition, there are some developed methods for 
constructing the probability density from the finite number 
of the moments.42  

Earlier it was noted that for the saturated intensity 
fluctuations in the theoretical investigations of the 
probability density of the fluctuations the most extensively 
used method is the method of moments. In this case it is 
necessary to take into account the instrumental and 
statistical measurement errors because in the real 
atmosphere the estimates of the highest moments may 
introduce considerable errors. There are a number of 
papers43,44,45 in which the statistical errors in estimating the 
highest moments were studied as well as the problems of 
consistency of experimental estimates of the measurement 
accuracy with the theoretical results were considered. 
However, in Refs. 43 and 44 only finite period of the 
measurement T was taken into account and it was implicitly 

assumed that during the course of measurement any 
improbable value of random process from the infinite 
interval could be realized. Such a model of a random signal 
is not adequate to the technical essence of the process of 
measurements and in estimating the highest moments it 
gives the results which deviate widely from the real values 
because instruments for measurements have always a 
restricted dynamic range and by virtue of a character of the 
measurement procedure, they are tuned to the most probable 
values of a signal to use it more completely. This leads to 
the fact that improbable values of a random process 
corresponding to large but finite spikes or deep fadings will 
be distorted, for example, the spikes will be cut off, while 
fadings will be distorted by the instrumental noise. The 
joint effect of both factors, namely, finite instrumental 
dynamic range and measurement period, on the accuracy of 
experimental determination of the highest moments of time 
series was first considered in Ref. 46. In particular, the 
truncated moment < I y

n> corresponding to the real 

measurements was calculated  
 

<I 
n
y> = ⌡⌠

I
min

I
max

 I 
n P(I) dI, 

 
where I

min
 and I

max
 are the minimum and maximum values 

of a signal in realization. For the lognormal distribution the 
authors derived the relations for the bias of the estimate of 
the nth real moment < I y

n> against its model value < I 
n>  

 

δn g 
<I 

n
y>

<I 
n>

 = 
1
2 ⎣
⎡

⎦
⎤1 + erf

⎝
⎛

⎠
⎞ln I

max
 – ξ

δ 2
 – 

nδ

2
, (8) 

 
where erf(z) is the error integral,22 and for the relative 
root–mean–square error in estimating the truncated 
moment 
 

δny = 
dny

<I 
n
y>

 2⎝
⎛
⎠
⎞τc

T

1/2

  
exp( )n2 δ2

2

nδ
 × 

 

× 
⎣
⎡

⎦
⎤1 + erf

⎝
⎛

⎠
⎞ln I

max
 – ξ

δ 2
 – 

2 nδ

2

1/2

1 + erf
⎝
⎛

⎠
⎞ln I

max
 – ξ

δ 2
 – 

nδ

2

 [1 – e–1]1/2
, (9) 

 
where τc is the correlation length of a lognormal process. 

Calculations of the bias carried out for most 
experimental conditions show that for the first moment it can 
be neglected. The underestimation of the highest moments for 
β > 1 becomes pronounced when I

max
 < (10–15)< I>. Such an 

underestimation of the highest moments was found in the 
experiments on propagation of laser radiation through the 
atmosphere.6 Calculations of the relative root–mean–square 
error of the experimental moment from Eq. (9) agreed 
satisfactory with the theoretical data.43 In addition to the 
analytical results, the data on model lognormal process that 
confirm the advantage of the proposed approach were also 
obtained in Ref. 46. The authors of Refs. 40 and 41 have 
arrived at the same conclusions as in Ref. 46, but in their 
papers no consideration has been given to the variance of 
the estimates of the moments for real sample. In Ref. 47 a 
procedure for calculating was different from the procedure  
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employed in Ref. 46. It was used to derive the relation for 
the bias of the normalized moments for this model with 
allowance for the limited instrumental dynamic range for 
the K–distribution 

 

δn = – 
2

y 
nΓ( y)

 ∑
i=1

n

 
Γ(n + 1)Γ(n + y)

Γ(n + 1 – i)Γ(n + y – i)⎝
⎛

⎠
⎞zDS

2

2n+y–2i

 × 

 

× ⎣
⎡

⎦
⎤Ky(zDS) + 

zDS

2(n + y – i) Ky–1 
(zDS) , (10) 

 
where zDS = 2(I

max 
y)1/2, Γ(z) is the gamma function, and 

Kv(z) is the modified Hankel function.22 Relation for the 

bias of the moments of exponential distribution modulated 
by the lognormal distribution, which was proposed in 
Ref. 48 to describe the saturated fluctuations, was also 
derived in Ref. 47 
 

δn = – ∑
i=1

n

 
 

n!
(n – i)! I

n–i
max

(1 + I
max

 σ2
z ξi)

–1/2 × 

 

× exp[–i lnξi – I
max 

ξi – (s2z /2) (i + I
max 

ξi)
2], (11) 

 

where σz
2
 
=
 
ln(< I 

2>/2) and ξi is determined from the 

equation – i + 1/2 – I
max 

ξi= lnξi /σ2
z . 

 
By comparing the results obtained in Ref. 47 with those 
obtained in Refs. 46 and 49, one can see that an account of 
the limited instrumental dynamic range most strongly 
affects the lognormal distribution, has less of an effect on 
the exponential distribution modulated by the lognormal 
one, and the least bias has the K–distribution. In this 
connection, the truncated moments of the above–mentioned 
distributions are rather close together and in comparison 
with the experimental data with allowance for the 
statistical spread it proved to be rather complicated to 
recognize proximity of the probability distribution to one or 
another law; therefore, it is necessary to analyze histograms 
of instantaneous values of the intensity. 

The behavior of the highest moments of the 
distribution mixtures should be specially mentioned. So–
called "loop effect", consisting in the fact that normalized 
moments grow with increase in the turbulence intensity (β

0
) 

up to some maximum values and then with further increase 
in the turbulence intensity they decrease down to their 
minimum values β = 1 corresponding to the exponential 
distribution, and the reverse dependence of moments differs 
from the direct one, thereby resulting in the loop formation. 
Such a behavior of moments can be explained on the basis 
of the empirical dependence of the root–mean–square 
deviation of the intensity fluctuations on the propagation 
conditions along the path.6 Presence of a hump in this 
dependence testifies that for two different turbulence 
conditions one value of the second normalized moment is 
possible; therefore, an additional parameter is required to 
distinguish between these conditions. As for the mixture of 
distributions, this is the "mixture parameter". However, if 
the statistical data spread for the highest moments becomes 
comparable with the loop width, it becomes impossible to 
identify the branch they belong and hence an analysis of 
histograms of instantaneous values of the intensity is also 
required here. 

 
FIG. 1. A comparison of the K–distribution (curve 1) 
with the lognormal distribution (curve 2) for β = 1.3. 

 

When analyzing the probability density by the 
histogram method, it is of great importance that the data 
would be measured by the instrument whose dynamic range 
is sufficiently wide for such measurements. This statement is 
illustrated by Fig. 1 which shows the probability densities 
of the K– and lognormal distributions for < I> = 1. As a 
rule, in all the experiments the data were obtained for 
0.1 ≤ I/< I> ≤ 25. It is obvious that both experimental 
normalized moments and histograms of the intensity will 
agree to within the statistical errors which have been 
neglected until recently in the experiment.20 Note that the 
first five moments of the intensity fluctuations for 
distributions (1) and (3) practically coincide in the above–
indicated range of variation of the normalized intensity 
(difference is much less than the statistical measurement 
error). Hence not only from the theoretical but also from 
practical viewpoint some distributions are ambiguously 
determined from the infinite number of their moments.50 
Really, as an experience shows, in the experiment in the 
real atmosphere within the time over which it is considered 
to be stationary (as a rule, no more than 20–30 min), the 
above–mentioned range of variation of the normalized 
intensity is realized for the sample length of about  
1–2 millions provided that the sampling frequency does not 
exceed 1 kHz. For this reason it seems impossible to 
estimate the probability density in some interval when this 
probability density is less than 10–5. 

The problem on the accuracy of the estimates of the 
probability density for continuous realization of a process 
over the period of observation T was considered in Ref. 51 
in which the relations for bias were obtained 

 

b ≈ (W 
2/24) P′′( x), (12) 

 

where W is the length of clustering interval and P′′(x) is 
the second derivative of the probability density P(x) with 
respect to the argument x, and for the variance of the 
estimate of the probability density 
 

D[ x] ≈ (P( x)/N W), (13) 
 

where N is the length of the sample of independent counts of 
random variable. Further, as follows from a theorem on 
discrete representation of a process with time,51 the realization 
of a random process with the frequency band B defined on the 
interval T can be completely described by N = 2BT discrete 
counts. These N discrete counts will not be necessarily 
statistically independent. Nevertheless, for any given 
stationary random ergodic process each of its realization 
contains n = N/c2 independent sampling counts, where c is  
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the constant depending on the form of the covariance function 
of a process and on the length of the sampling interval. Hence 
it follows from Eq. (13) that 
 

D[ x] ≈ c
2 P( x)/2 B T W. (14) 

 

Total mean–square error in estimating the probability density 
is a sum of the variance given by Eq. (14) and square bias 
given by Eq. (12), hence the normalized mean–square error is 
equal to 

ε2 ≈ c2/2 B T W P ( x) + (W 
4/576) [P′′( x)/P( x)] 

2. (15) 

Taking the square root of Eq. (15) we obtain the normalized 
root–mean–square error ε. As follows from relation (15), in 
measuring the probability density the corridor width W must 
meet contradictory requirements. On the one hand, to decrease 
the random error it is desirable to take large values of W. On 
the other hand, to decrease the bias it is necessary to narrow 
the corridor W. But the problem is the limited time over 
which the atmosphere can be considered stationary in the 
course of measurements. In the best case T is no more than a 
few tens of minutes; therefore, the probability density P(x) for 
vary narrow corridor can be estimated only with significant 
error. 
 

4. ANALYSIS OF EXPERIMENTAL DATA 
 

Virtually all the experimental data obtained up to 1976 
for the strong fluctuations were well approximated by the 
lognormal distribution. The most reliable results were obtained 
in Ref. 52 in which much care was taken to control the 
meteorological parameters (homogeneity of the turbulent 
characteristics along a path, β

0
 ≈ 5) and the radiation 

parameters; moreover, the receiving aperture had adequate 
spatial and temporal resolution. An analysis of data by the 
method of histograms and moments with allowance for the 
limited range of counts of the random process obtained during 
the measurement period unambiguously indicated an advantage 
of the lognormal model over the exponential model for 
histograms in the range of signal spikes above an average 
level. From the viewpoint of the results obtained in the above 
section, the recording instrument52 had insufficiently wide 
dynamic range that gives no way to obtain a reliable estimate 
in the range of deep fadings of signals.10,53  

Proximity of the experimental data to the lognormal 
distribution can be also seen in the case of reflecting a 
spherical wave from a specular plane10 for weak and strong 
intensity fluctuations when β

0
 ≤ 2.5. 

For strong intensity fluctuations of optical waves near 
their focus (β

0
g2) the K–distribution was first proposed in 

Ref. 20 in which the experimental relative intensity moments 
were shown to deviate from model (1). They approach the 
moments of the K–distribution given by Eq. (3). For large 
values β

0
g4 these conclusions were confirmed in the analogous 

experiments.38 However, in Ref. 10 for the same values of the 
parameter β

0
g2 with allowance for the dynamic range of the 

magnitudes of the intensity realized in the experiment 
according to the considerations given in the preceding section 
it was pointed out from the analysis of the data that the 
conclusions made in Refs. 20 and 38 were inadequately 
warranted, and large difference between the experimental 
histogram and the model K–distribution for deep intensity 

fadings I�< I> was indicated. In addition, the probability of 

fadings and histogram mode position indicated closer 
proximity to the lognormal distribution in comparison with 
the K–distribution for β

0
g2. 

The intensity fluctuations of a plane wave studied 
recently for much greater values β

0
 g 5 in comparison with 

Refs. 10 and 52 showed that under these conditions the K–
distribution got closer to the experimental data than the 
lognormal distribution in the range of deep fadings. As to the 
rest of the magnitudes of the intensity, these data become so 
much close to each other that they can hardly be 
distinguished.53  

This conclusion for strong intensity fluctuations 
(β

0
 g 10–12) is in qualitative agreement with conclusions of 

Ref. 39 which presented the estimates of the corrections for 
the K–distribution for saturated intensity fluctuations. A 
comparison of histogram of the saturated intensity fluctuations 
for a plane wave with model (5a) is shown in Fig. 2. The 
values of the probability density P(I) are closest to the 
histogram in the range 0.1 < I/< I> < 2.5. For deep fadings 
0.01 ≤ I/< I> ≤ 0.025 the values of P(I) exceed the histogram 
by 2–2.5 orders of magnitude, for moderate fadings 
0.02 ≤ I/< I> ≤ 0.1 the difference is about 0.5–1 orders of 
magnitude, and in the range of spikes I/< I> ≥ 10 the 
difference is about 3 orders of magnitude. Discontinuities in 
the distribution density ΔP(I) hear the ends of the intervals of 
argument variations in model (5a) are as follows: 
ΔP(I

1
) = 9.11 at I

1
 = 2.66 and ΔP(I

2
) = 0.112 at I

2
 = 7.06. 

In other words, here the K–distribution fits the experimental 
data53 much more better than model (5a). 

 
FIG. 2. A comparison of histogram (circles) of the 
normalized intensity for a plane wave with model (5a) 
(solid lines). 

 
FIG. 3. A comparison of histogram of normalized intensity 
with the K–distribution (curve 1) and with the lognormal 
distribution (curve 2) for a spherical wave reflected from a 
corner–cube reflector. 
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Proximity of the experimental data to the K–
distribution can be seen in the case of reflecting a 
quasispherical wave from a corner–cube reflector with the 
diameter d

ref
 = 2.5 cm on a path of length L = 1250 m for 

the parameter β
0
(L) = 4.47. This is illustrated by Fig. 3. 

Vertical bars denote the histogram variance estimated 
according to Eq. (13). Bias of histogram estimate in the 
range of deep fadings is insignificant and can be neglected. 
Still closer proximity is observed in the case of reflecting 
from an array of 12 corner–cube reflectors34 arranged 
compactly (see Fig. 4). In this case the probability density 
in the range of the saturated intensity fluctuations remains 
practically unchanged and lies within the limits of 
statistical spread beginning with β

0
(L) > 3. The last fact 

also takes place in the turbulent atmosphere at large optical 
thicknesses τ > 3.6 under precipitation conditions54 both in 
the case of direct propagation and reflection from an array 
of corner–cube reflectors (see Fig. 5). 

 

 
 

FIG. 4. A comparison of histogram of the normalized 
intensity with the K–distribution (curve 1) and with the 
lognormal distribution (curve 2) for a spherical wave 
reflected from an array of 12 corner–cubes. 
 

 
 

FIG. 5. Histogram of the intensity fluctuations of a 
narrow collimated beam in the rain (2 and 3) and 
turbulent atmosphere (1) when the beam is reflected from 
an array of 12 corner–cubes. 

An additional parameter determining the statistical 
characteristics of a received optical signal is the correlation 
between the size of receiving aperture and spatial 
correlation length of the intensity fluctuations. There are a 
comparatively small number of works in which the effect of 
this factor was studied experimentally. Previous 
experimental results were reported in Ref. 6 in which the 
stability of lognormal distribution of the probability density 
of the light flux fluctuations in the sense of variations of 
the diameter of a receiving aperture was pointed out. In 
other words, with increase of the diameter of the receiving 
aperture only the variance of fluctuations decreases, while 
the probability density remains lognormal one. This 
conclusion holds up to the largest diameters d ≈ 1 m, for 
which the distinction between the lognormal and Rayleigh–
Rice distributions becomes insignificant from the practical 
viewpoint.  

 

 
 

FIG. 6. A comparison of histograms of the instantaneous 
values of the light flux reflected from a specular discs of 
different diameters with the lognormal distribution for 
β

0
(L) ∼ 3: 1) d

ref
 = 12.5 cm, β = 0.93; 2) d

ref
 = 2.5 cm, 

β = 0.67; and, 3) d
ref

 = 5.5 cm, β = 0.48. 

 

 
 

FIG. 7. A comparison of histogram of the instantaneous 
values of the light flux reflected from a specular disc of the 
diameter d

ref
 = 12.5 cm with the lognormal distribution: 

1) β
0
(L) = 3.35, β = 0.93; 2) β

0
(L) = 1.98, β = 0.21. 

 
The same situation is also observed in backward 

scattering from specular objects (disc, corner–cube, array of  
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corner–cube reflectors) over a wide variety of propagation 
conditions for different values of the parameter β

0
(L). 

Figure 6 shows the probability density of the light flux 

fluctuations P
~
(P) of a spherical wave reflected from specular 

discs of different diameters in the case of practically complete 
interception of a reflected beam by an aperture with a 
diameter of 500 mm for close values of the parameter β

0
. It 

can be seen that only in the ranges of spikes and fadings the 
distribution deviates from lognormal one. In this case in the 
range of spikes it lies above the lognormal distribution. An 
increase in the turbulence intensity under the same conditions 
results in variation of the variance of the flux fluctuations, 
while the functional form of the probability density remains 
close to the lognormal distribution (see Fig. 7). 
 

 
 

FIG. 8. A comparison of histograms of the normalized 
values of the light flux reflected from a specular disc (1) 
and array of 12 corner–cubes (2) with the lognormal 
distribution for d

ref
 = 12.5 cm and β

0
(L) = 4: 1) β = 0.93 

and 2) β = 0.41. 
 

Figure 8 illustrates the probability density of the light 
flux fluctuations across the aperture with a diameter of 
500 mm in the case of reflection from a mirror with a diameter 
of 12.5 cm and an array of 12 corner–cube reflectors with 
approximately the same aperture. Due to the fact that under 
considered propagation conditions the array of corner–cubes is 
a self–focusing system,34 the spatial correlation length of the 
intensity fluctuations will less than that in the case of 
reflection from a specular disc of equivalent size resulting in a 
greater degree of averaging of fluctuations over the aperture, 
in spite of the fact that the flux fluctuations across the 
reflector are approximately identical in both cases (difference 
in the parameter β

0
 is small). As can be seen, in all the 

above–considered cases the light flux fluctuations are close to 
the lognormal distribution. 

Thus the experimental data on the probability density of 
the intensity fluctuations obtained in recent ten years 
unambiguously point out the applicability of the so–called 
K–distribution for describing the probability density of the 
intensity fluctuations in the following cases: 1) for the values 
of the parameter β

0
 ≥ 10 in the case of direct propagation, 

2) in the case of propagation through the atmosphere in the 
rain at large optical thicknesses, and 3) in the case of 
reflection from an array of corner–cube reflectors. In the case 
of reflection from artificial specular small objects the 
probability density obeys the lognormal distribution law. In 
the range of β

0
 close to the focus of the intensity fluctuations  

the probability density, apparently, must be described fairly 
well by the combination of the lognormal and K–
distributions. 

In conclusion the authors would like to acknowledge 
A.P. Rostov, A.I. Petrov, and O.A. Pelymskii for their 
participation in the experiments. 
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