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Thermal distortions of Gaussian light beams in sub– and supersonic gas flows 
with suspended solid aerosol particles are investigated. It is demonstrated that under 
typical atmospheric conditions the effect of aureole scattering on the peak light beam 
intensity is less pronounced than that of thermal blooming. It is found that aerosol 
particle thermal inertia results in focusing of Gaussian light beams in subsonic cross 
flow of an aerosol medium and affects inversly in supersonic flow.  

 
Nonlinear distortions of high–power light beams 

propagating in the atmospheric solid aerosol were widely 
studied in the literature (see, e.g., Refs. 1 and 2). In 
particular, it is well known that without destruction 
(combustion, evaporation, or explosion) of particles upon 
exposure of radiation, the variations in the beam intensity 
are due to both nonlinear refraction (thermal blooming) and 
scattering of radiation on thermal haloes arising around the 
heated particles. The two aforementioned nonlinear 
phenomena are engendered by the variations in the real and 
imaginary parts of the effective index of refraction of 
aerosol medium, respectively.3,4 Previously they were 
considered separately (see, e.g., aureole scattering in Ref. 5 
and thermal blooming in Ref. 6). Given in this paper are a 
comparative analysis of these effects and their joint 
manifestation. It is also known that aerosol particle thermal 
intertia may affect the character of thermal distortions of 
light beams7; therefore, this effect is discussed at length 
here.  

We consider a light beam propagating in the positive 
direction along the z axis and moving relative to an air 
medium. Let the x axis be directed along a gas flow with 
suspended particles. This flow is transverse to the beam. 
Without regard to aureole scattering (the imaginary part of 
the effective index of refraction of a medium) the nonlinear 
self–refraction of the light beam is determined by the real 
part of the refractive index which in its turn is proportional 
to mean (averaged over a volume element containing a large 
number of particles) density of air. To describe nonlinear 
self–refraction (self–action) of the beam in this case, the 
equation of paraxial optics in dimensionless variables8 can 
be used  
 
∂u
∂z + i ∇2

⊥ u = – i F N ρ1 u – 
Nα
2  u , (1) 

 
where u is the complex field amplitude; uu*=I is the 
dimensionless radiation intensity (normalized to the 
characteristic intensity I0); F = 2πa2/λL is the Fresnel 

number; λ is the radiation wavelength; a is the beam radius; 
L is the characteristic path length; Nα = αeL is the 

extinction factor; αe is the radiation extinction coefficient 

incorporating molecular and aerosol absorption and 
scattering; N = (L/zt)

2 is the thermal blooming parameter; 

zt = a / ε(n0 – 1) is the length of thermal blooming; n0 is 

the refractive index of air; ε = (αm + αa) I0 a /ρ0 V0 h0 is  

the scale of perturbation of the mean (averaged over a 
volume element containing a large number of particles) 
density of air; ρ0, V0, and h0 are the unperturbed density, 

velocity, and enthalpy of the gas flow, respectively; αm and 

αa are the coefficients of molecular and aerosol absorption,; 

and, ρ1 is the function describing the perturbation of mean 

density (<ρ>/ρ0 = 1 + ερ1). The transverse coordinates in 

Eq. (1) are normalized to the characteristic radius of the beam 
a, and the longitudinal coordinate z is normalized to L.  

Equation (1) is equivalent to the corresponding equation 
for thermal blooming in a pure gas8 with the only difference 
that the concept of mean density averaged over a volume 
element containing a large number of particles is used in place 
of the density. It can be readily shown that perturbation of 
the mean gas density is determined by the mean rate of the 
volume heat release which in its turn appears to be 
proportional to the radiation intensity when the time required 
to heat up the aerosol particles is sufficiently small. Hence the 
mean density perturbation function ρ1 in this case can be 

found using linearized equations of gas dynamics used to 
determine the perturbation of the density of a gaseous medium 
in the case of molecular absorption.8 Thus effects of nonlinear 
self–refraction of radiation in an aerosol medium and a pure 
absorbing gas are fully equivalent for equal absorption 
coefficients, if the time required to heat up the particles and 
the corresponding time delay of heat release are small 
compared to the characteristic gas–dynamical time a/V0. 

Below we return to the problem of determining the mean 
density perturbation function ρ1 taking into account the finite 

time required to heat up the particles and its effect on the 
character of thermal distortions of the light beam.  

Let us now calculate the nonlinear aureole scattering of a 
light beam in a cross gas flow containing suspended absorbing 
particles. Analogous calculation for an optical beam switched 
on at t = 0 in a stationary aerosol medium was made in Ref. 3 
and the following result was obtained for the coefficient of 
aureole scattering:  
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where I is the dimensionless intensity normalized to I0, κa is 

the factor which describes the efficiency of radiation 
absorption by an aerosol particle, χ is the thermal diffusivity, 
r0 is the radius of the aerosol particle, t0 = r20/χ, and 

κ = 2π/λ is the wave number.  
It should be noted that t0 ∼ 5⋅10–8 s (for r0 = 1 μm and 

χ = 2⋅10–5 m2/s) is much smaller than the characteristic time 
of radiation exposure to a particle a/V0; therefore, the limit 

t/t0 → ∞ must be taken in Eq. (3). In this case the integrand 

differs noticeably from zero only at small values of x, and 
hence the expression (sin x – x cosx)/x3 can be replaced by 
1/3. The result is  
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When an optical beam is in a cross flow, the form of 

the function I(t), which enters into Eq. (4), is determined 
by aerosol particle motion at the velocity V0 through the 

cross section of the beam of given shape I(x, y). In a 
stationary case in which the beam intensity is constant with 
time, taking into account formulas (2) and (4), the 
following expression for the coefficient of aureole scattering 
vs. transverse coordinates can readily be obtained:  
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Here the variables x and y are normalized to the beam 

radius a.  
 

 
 

FIG. 1. Contours of the function of aureole scattering 
g(x, y) corresponding to 10, 25, 50, 75, and 90% of its 
maximum gmax = 0.829 attained at a point marked  

off by a cross.  

Using Eq. (6) and standard algorithms for numerical 
integration, the function of aureole scattering for Gaussian 
intensity distribution over the beam cross section 
I(x, y) = exp [– (x2 + y2)] was calculated. The result is 
shown in Fig. 1. The scattering is maximum for the leeside of 
the beam at x = 0.61.  

In calculating the light beam propagation, the aureole 
scattering can be taken into account by adding the term  
– (Ns/2) g(x, y) u to the right side of Eq. (1), and g(x, y) 

in this case is determined from Eq. (6).  
Now let us compare the two nonlinear effects of 

aureole scattering and thermal blooming. By following the 
formula (5) and expression for the thermal blooming 
parameter [see the text after Eq. (1)], we find the following 
relation between the parameters N and Ns:  

 

Ns = N2 F2 
⎝
⎛

⎠
⎞αa
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Λ

πL .  (7) 

 
Here Λ = 1/νσor is the optical path between haloes, ν is the 

aerosol particle concentration, σor = πr 2
or is the cross section 

of a thermal halo, and ror = 4χa/V0 is its characteristic 

radius.  
Let us now determine the relative contributions of 

aureole scattering and thermal blooming (self–refraction). 
Let us take N = 1, i.e., the path length L equals the length 
of thermal blooming zt. In this case the intensity on the 

target changes by the order of magnitude due to thermal 
blooming. For the same to happen due to aureole scattering, 
the parameter Ns must be equal to unity. By following 

formula (7) and taking into account α2
a / (αa + αm)2 ≅ 1, 

we obtain the condition for the Fresnel number F ≅ zt/Λ.  

Now we estimate the value of Λ. Taking the following 
characteristic values of the parameters: ν = 10 cm–3,  
a/V0 = 10–3 s, and χ = 2⋅10–5 m2/s, we obtain Λ = 40 cm. 

When the length of thermal blooming zt = 4 km, we obtain 

the condition for the Fresnel number F ≅ 100. Hence 
aureole scattering may strongly affect the beam propagation 
in the aerosol only for a very short–wave beam whose 
Fresnel number is no less than 100. Thus in the majority of 
cases the contribution of aureole scattering is much less 
than that of thermal blooming.  

In spite of what has been said above, of interest is the 
study of a weakly pronounced effect of aureole scattering on 
thermal distortions of a light beam propagating through a 
moving aerosol medium. Such calculations were made for an 
optical beam in subsonic (M = 0 and 0.8) and supersonic 
(M = 1.5 and 2) flows (M = V0/cs is the Mach number 

and cs is the sound speed in air). The results of calculation 

of peak intensity variations in an initially Gaussian beam 
I(x, y)⏐z = 0 = exp[–(x2 + y2)] along the path (vs. the 

dimensionless coordinate z) for the parameters of aureole 
scattering Ns = 0, 0.2, and 0.4 are depicted in Fig. 2. The 

calculations were accomplished by numerical solution of 
Eq. (1) with the term – (Na/2) g(x, y) u added to its 

right side. In this case we used the algorithm proposed in 
Ref. 9, whose implementation was described in Ref. 10 in 
detail. In supersonic regime the amount of decrease of 
light beam intensity due to aureole scattering turns out to 
be relatively larger than that in subsonic regime. This is 
associated with the changes in the beam shape along the 
propagation path.8 In the subsonic flow the beam acquires 
a characteristic crescent shape with maximum intensity 
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being strongly displaced in the direction counter to the 
flow towards the region of small values of the scattering 
function g(x, y) (see Fig. 1). In the supersonic flow the  

initial position of peak intensity remains practically 
constant, and hence it is subject to a much stronger effect 
of aureole scattering. 

 
 

 
 

FIG. 2. Variations in the maximum intensity Imax = max
x, y

[I(x, y)] along the path for different values of the aureole 

scattering parameter Ns (adjacent to the curves) and light beam in subsonic (a) and supersonic (b) flows of an aerosol 
medium. Calculation was made neglecting the linear mechanisms of intensity extinction for Nα = 0, N = 1, and F = 5.  
 

Now we turn back to the problem of the influence of 
the finite time of particle heating on manifestation of 
nonlinear effects accompanying the propagation of high–
power optical beams through an aerosol medium. Since, as 
was stated above, the contribution of aureole scattering 
turned out to be relatively small, we restrict our 
consideration to the influence of particle heating rate on 
thermal blooming. For simplicity and clarity, we ignore 
molecular absorption and restrict ourselves to the case in 
which the whole heat releases to gas through aerosol.  

Now we determine the relation between the 
dimensionless heat release to gas q (normalized to the 
quantity q0 = αaI0) and the dimensionless intensity I. For 

the temperature of the particle surface Tp we have the 

equation  
 

d( Tp – T0)

dt  = – 
3χ* p0 Cp

r 20 ρ* C*
 ( Tp – T0) + 

3
4 

κa I0 I(t)

ρ* C* r0
 , (8) 

 

where ρ* and C* are the density and specific heat of a 
particle and I(t) is determined, as previously, by particle 
passage across the light beam. The quantity r2

0

 ρ* C*/(3 χ ρ0 Cp) = τrel is the time of particle thermal 

relaxation. It should be noted that the aforementioned 
equation is valid only when the times of establishing of a 
temperature field inside the particle r2

0/4χ* (χ* is the 

thermal diffusivity of the particle material) and outside of 
it r2

0/4χ are small compared to τrel. However, this 

condition always holds.  
A heat flow to a gas is related to the temperature of 

aerosol particle surface by the expression 
q q0 = 4 π r0 ν (Tp – T0) χ ρ0 Cp. After transforming in  

Eq. (8) to dimensionless variables (by normalizing the 
time to the quantity a/V0 and using dimensionless heat 

release q in place of (Tp – T0), we obtain  

 
dq
dt = 

1
δ ( I – q) ,   (9) 

 
where δ = τrel/(a/V0).  

Let us construct the solution of Eq. (9) for small δ. 
Assuming I – q = δY and neglecting the term of the 
order of δ(dY/dt), we obtain Y = dI/dt. Wherefrom, 
using the equality d/dt = ∂/∂x + ∂/∂t, we finally have 
q(x, y) = I – δ(dI/dt) = I(x – δ, y, t – δ) or in the 
stationary case q(x, y) = I(x – δ, y).  

Thus the finiteness of aerosol particle heating rate in 
the first order is manifested in simple time delay of heat 
release that in its turn causes the displacement of the 
perturbed density field downflow by the amount δ 
compared to the case of molecular absorption or 
inertialess aerosol particles. This displacement affects 
thermal blooming.  

The quantitative aspect of this effect is depicted in 
Fig. 3 where the peak intensity variations in a Gaussian 
beam are shown along the path with different values of 
the parameter δ. The calculations were made both for 
subsonic and supersonic velocities of cross flow of an 
aerosol medium. In subsonic regime the beam tangibly 
tends to focusing when δ increases. This effect becomes 
especially pronounced for M = 0.8. On the contrary, in 
supersonic regime, after the termination of the transfer of 
absorbed energy to a gas, some defocusing of the beam 
takes place. In this case the effect is much less 
pronounced than that in a subsonic flow.  
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FIG. 3. Variations of maximum intensity in the light beam propagating along the path for different values of the 
parameter δ (adjacent to the curves) in subsonic (a) and supersonic (b) flows of an aerosol medium. Calculation was made 
for Nα = 0, N = 1, and F = 5.  
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