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We give an overview of functional reconstruction theory for predicting whole 
beam Strehl ratios in real time as applied to thermal blooming. This technique is based 
on our exact analytic solution to the problem of the interaction of thermal blooming 
and turbulence.1 We begin by writing down the reconstruction formula that relates a 
finite sized beam Strehl ratio to a sum involving the Strehl ratio of an infinite beam 
or periodic patch. We then define what a dynamically equivalent patch is and follow 
by describing the functional approach to scaling patch Strehl curves using a metric on 
the space of absorption profiles. We end by comparing results from our systems model 
based on functional reconstruction, AMPERES, which takes only seconds on any 
machine, with results from large nonlinear 4–d wave optics simulations.  

 
1. OVERVIEW OF FUNCTIONAL RECONSTRUCTION 

 
Functional reconstruction involves three steps. The 

first step is to relate infinite beam (or periodic patch) 
structure functions1 to the complex amplitude of a finite 
sized or whole beam. This provides a reconstruction 
formula that relates the subaperture or patch structure 
functions to the whole beam Strehl ratio. In this way, the 
computation of the Strehl ratio of the whole beam is 
reduced to a single sum of separate patch results. The 
next step is to match the dynamical characteristics of the 
patch to that point in the whole beam where the patch is 
placed. The final step is to apply functional calculus to 
the patch structure functions to scale a patch at one point 
in the beam to the appropriate patch at another point. In 
this way, relatively few patches are needed to reconstruct 
whole beam Strehl ratios under a wide variety of physical 
beam characteristics. The resulting numerical construction 
for predicting these whole beam Strehl ratios takes only 
seconds on any machine.  

 
2. THE RECONSTRUCTION FORMULA 

 
A reconstruction formula relates a finite sized or 

whole beam Strehl ratio to a sum involving the structure 
functions of an infinite beam, or equivalently, of a small 
periodic patch of the beam. The basic idea is to find a 
mathematical estimate of the complex amplitude of the 
whole beam in terms of infinite beam structure functions. 
Intuitively, one can see that a reconstruction is possible, 
because the dynamically relevant and dominant spatial 
scales, which are ultimately set by turbulence, are much 
smaller than the beam size. The Strehl ratio of a large 
beam then reduces to a local property of the beam. 
Mathematically, the existence of a reconstruction formula 
is guaranteed by Eq. (1) below because the complex 
amplitude is itself a local property of the beam.  

Let U(x, z) be the complex amplitude of a whole 
(i.e., finite sized) beam at the point x and altitude z. The 
Strehl ratio, S, of a uniform flat–top beam at z = L is  
 
 

S = ⌡⌠d2x U(x, L)
2 .  (1) 

 

A mathematical estimate of the complex amplitude U(x, z), 
in terms of the patch or infinite beam structure functions is  

 

U(x, z)  ∼ S 1/2
p  (φ(x, z)) , (2) 

 

where φ(x, z) is the total amount of heating that has 
occurred at x in the beam at altitude z and where Sp is the 

patch Strehl ratio evaluated at (nondimensional) time 
φ(x, z) (Ref. 1). Using this estimate, the Strehl ratio of the 
whole beam in terms of the patch Strehl ratio is  

S = ⌡⌠d2x S1/2
p  (φ(x, L))

2

. (3) 

 

The generalization of the reconstruction formula to 
nonuniform beams is  

S = 
⌡⌠d2x S1/2

p (φ(x, L)) I1/2
0 (x, 0)

⌡⌠d2x I1/2
0 (x, 0)

2

. (4) 

 

Therefore, to make Strehl predictions for a finite sized 
beam from patches or infinite beams, we need to know 
the patch Strehl curve, Sp(φ), as a function of time, φ, of 
the dynamically equivalent periodic patch.  

Next we must define what a dynamically equivalent 
patch is.  

 
3. DYNAMICALLY EQUIVALENT PATCHES 

 

Consider a point x in the whole beam at z = L (see 
Fig. 1). Looking back down the beam we can associate the 
following with each point x in the beam:  

 



566   Atmos. Oceanic Opt.  /August  1993/  Vol. 6,  No. 8 S. Enguehard and B. Hatfield  
 

 

a heating rate profile = 
∂
∂z 

D
Dt φ = Ã k α(z) I0(x, z), (5) 

 

a heating profile = 
∂f
∂z ,  

 

a heating rate = 
dφ
dt ,  

 

and total heating = φ(x) .  
 

Here, D/Dt is the usual convective derivative based on the 
wind component transverse to the beam direction, κ = 2π/λ 
is the beam wave number, Γ is a mixture of thermodynamics 
constants, and α(z) is the absorption profile.  

 

 
 

FIG. 1. With each column below the point x in the beam we 
can associate a heating rate profile, a heating profile, a 
heating rate, and total heating. The dynamically equivalent 
patch has the same heating profile and heating rate.  

 
The dynamically equivalent patch or infinite beam 

appropriate to use at a point x in the whole beam is the 
one that matches the heating profile and total heating 
rate as seen at a point x looking down the beam. To 
arrive at the heating profile looking down from the point 
x in the whole beam, we must integrate the convective 
derivative. This integral over t at each altitude z in the 
whole beam case translates into a line integral in the 
transverse direction along the wind direction from the 
edge where the air entered the beam to the point x. Thus, 
depending upon the wind profile, the heating profile can 
vary from point to point in the whole beam. This means 
that potentially we would have needed a different patch 
Strehl curve at each point of the beam. So to make this 
reconstruction method practical, we will scale one patch 
Strehl curve generated with a particular heating profile 
and heating rate to another patch Strehl curve at a 
different heating profile and rate. In this way, we can 
reconstruct the entire beam with relatively few patch 
Strehl curves under a large variety of physical conditions.  

 
4. SCALING HEATING PROFILES ON A PATCH 

 
Infinite beams or patches with periodic boundary 

conditions have no mathematically relevant edges. Since 
there are no edges, all air spends the same amount of time 
in the beam. The moment of time t = 0 for a patch or 
infinite beam is defined by when the laser is turned on 
and not by when a parcel of air enters the beam as in the 
whole beam case. The patch heating rate profile does not 
involve the convective derivative, thus the heating profile 
on a patch is strictly proportional to the absorption 
profile:  
 

∂φ
∂z = Ã k α(z) 

⎝
⎜
⎛

⎠
⎟
⎞

⌡⌠
0

t

d t′ I(z, t′) , (6) 

 

Therefore, in order to scale the heating profile of a patch, 
we scale the absorption profile. Since the scaling parameter 
is a function, α(z), we must use the functional calculus to 
accomplish this. The heating rate on a patch may be scaled 
by adjusting the intensity of the patch.  
 

5. FUNCTIONAL SCALING OF ABSORPTION 
PROFILES 

 
The patch or infinite beam Strehl curve (i.e., the 

Strehl ratio as a function of time) is a functional of the 
absorption profile, Sp = Sp[α]. The perturbative solution 

of the linear theory of thermal blooming of infinite beams 
for nonuniform atmospheres yields an analytical 
expression for the patch Strehl curve in the form of a 
functional Taylor expansion of ln(Sp[α]) about the profile 

α(z) = 0 (i.e., no blooming). This result1 can be written 
as  
 

Sp(α,φ) = exp 

⎝
⎛

⎠
⎞– 0.093 (NT)

–5/6 ∑
nm

 A
nm

(α, φ) , (7) 

 
where N

T
 = r0

2/λL is the turbulence Fresnel number, and 

where φ = Γκt ∫ dzα(z)I0(z) is the number of radians of 

blooming – a nondimensional measure of time. The 
coefficients A

nm
[α] are functionally proportional to αn+m 

and depend on the atmospheric turbulence profile and the 
actuator spacing of the adaptive optics.  

The explicit form for Sp[α], Eq. (7), can be used to 

scale patches with different heating profiles (i.e., 
absorption profiles). To do this, we use Sp[α] to define a 

metric on the space of all normalized absorption profiles. 
This metric tells us when two absorption profiles are close 
to each other in the sense that they produce the same 
patch Strehl curve. The functional scaling of absorption 
profiles is based on interpolating the "distance" between 
absorption profiles.  

To construct the metric we first consider the space of 
all normalized absorption profiles (see Fig. 2). Above 
each point in this space of absorption profiles, we 
associate a "height" equal to Sp[α] (see Fig. 3). This 

produces a "surface" over the space of profiles. Now we 
look for the critical points of this surface, and in 
particular for the point, α0(z), that maximizes the height 

and the curvature. We then use this artificial absorption 
profile as a metric on this space to do scaling with. Two 
points (i.e., two profiles) will be close to each other 
when they produce the same amount of blooming as 
measured by the Strehl ratio, or when they have the same 
overlap with α0(z).  

 

 
 

FIG. 2. The back drop upon which the functional scaling of 
patches occurs is the function space of all absorption 
profiles. Each point in this space is an absorption profile or 
function of z.  
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FIG. 3. Above each point in the space of absorption 
profiles we associate a "height" equal to the patch Strehl, 
Sp[α]. This defines a "surface" above the space of profiles. 

α0 is a critical point of that "surface".  

 
In practice, our algorithm uses only the A11 term

1 of 

Eq. (7) to find α0(z). Since this term is quadratic in α,  
 

A11 = ⌡⌠d z′ d z α(z′) F(z′, z) α(z), (8) 

 
then α0(z) is the eigenvector that produces the maximum 

eigenvalue of the operator F(z′, z). When there is 
significant wind shear, the maximum eigenvalue profile will 
depend on the heating rate.  

An example of such an eigenvector absorption profile 
is given in Fig. 4. In this particular case, the atmospheric 
turbulence profile is Hufnagel–Valley 5/7, the background 
wind is Bufton, the heating rate is 60 radians/sec, and 
L = 5 km. A typical profile based on measurements is 
included for comparison.  
 

6. FUNCTIONAL INTERPOLATION OF HEATING 
PROFILES USING α

0
 

 
Now consider two different patches, 1 and 2, with 

different absorption profiles, α1 and α2, i.e., with two 

different heating profiles. These patches could be two 
samples from different parts of the beam. Suppose that we 
have Sp[φ1, α1], the patch Strehl curve for patch 1 and we 

would like to know Sp[φ2, α2]. Let us discuss how we scale 

the two patches using the metric α0(z).  
 

 
 

FIG. 4. An example of an eigenvector absorption profile, 
α0, in comparison with an actual absorption profile.  

 
The notation we use is  

 

k(a⏐b)j = ⌡⌠d z a(z)b(z), (9) 

 

and for convenience assume, for the moment, that both 
profiles we are considering contain the same total amount of 
absorption, 
 

k(α1⏐1)j = ⌡⌠d z α1(z) = k(α2⏐1)j = ⌡⌠d z α2(z) . (10) 

 

After an elapsed amount of time, t, the total amount of 
heating will be 
 

φ1 = k
∂φ1

∂z ⏐1j and φ2 = k
∂φ2

∂z ⏐1j , (11) 

 

φ1 ≠ φ2 because the absorption is distributed differently in the 

two patches.  
Since α0 is the dominant contribution to the heating, φ1 

may be related to φ2 by simply determining how much of an 

overlap there is numerically between α0 and α1 and how much 

overlap there is between α0 and α2. In formal terms, define an 

α0 projection operator,  
 

P = 
⏐α0j kα0⏐

kα0⏐α0j
 , (12) 

 

Then,  
 

φ1 = 
∂φ1

∂z ⏐1 ∝ <α1⏐1j P→ 
kα1⏐α0jkα0⏐1j

kα0⏐α0j
, (13) 

 

and,  
 

φ2 = 
∂φ2

∂z ⏐1 ∝ <α2⏐1j P→ 
kα2⏐α0jkα0⏐1j

kα0⏐α0j
, (14) 

 

hence,  
 

φ1

φ2
 ≈ 

kα1⏐α0j

kα2⏐α0j
 , (15) 

 

If the total absorption is not the same in the two patches, 
then  
 

φ1

φ2
 ≈ 

kα1⏐α0j

kα2⏐α0j
 
kα2⏐1j

kα1⏐1j
 .  (16) 

 

Thus, if we know Sp[α1] and are given φ2 and α2 but not 

Sp[α2], then we substitute Sp[φ
∼
1, α1] for Sp[φ2, α2] where φ

∼
1 is 

computed from φ2 via Eq. (16). In this way, a limited number 

of patch Strehl curves may be used to construct a whole beam 
under a large variety of wind/slew/absorption conditions.  

 
7. AMPERES 

 
We have developed a systems model, AMPERES, 

implementing the functional reconstruction theory just 
described. This systems model employs just a few patch Strehl 
ratios to reconstruct the Strehl for a finite beam under a large 
variety of physical conditions. It runs on any machine in 
seconds and predicts the Strehl ratio of a finite sized beam at a 
wind clearing time. The systems model has been implemented 
at four different wavelengths: 0.41 μm, 1.06 μm, 1.3 μm, and  
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3.8 μm. So far, AMPERES is designed for unidirectional 
background winds.  

 

 
 

FIG. 5. Comparison of Strehl ratio predictions at 2.5 km 
at a wind clearing time for a 2.5 mW, 1.4 m uniform 
flat–top beam. The background turbulence profile (3) is 
SLCday, the absorption is nonuniform, and the 
background wind is uniform. All AMPERES points (1) 
are based on just 2 patches. Each PHOTON point (2) 
represents a large nonlinear 4–d wave optics simulation. 
g35 is a PHOTON run designation.  
 

In Fig. 5. we compare Strehl predictions at a wind 
clearing time from AMPERES with results from NERA's 
nonlinear 4–d wave optics code PHOTON. All AMPERES 
points are based on just 2 patches. Each PHOTON point 
represents a large and long numerical simulation. In this 
comparison, the background wind is uniform. In Fig. 6 a 
similar comparison is made for a truncated Gaussian beam 
propagated to 5 km. However, in this set the background 
wind is Bufton which contains a large amount of wind shear 
above 2.5 km.  

Functional reconstruction offers an economical and 
fast prediction of whole beam Strehls whether for routine 
calculations, increased precision or pre–experiment 
calibration or guidance. Reconstruction accuracy improves 
as the beam diameter increases, thus functional 
reconstruction is the economical approach to large beam 
diameter predictions where numerical simulations are 
impractical or inaccurate due to numerical resolution 
requirements. 

 

 
 

FIG. 6. Comparison of Strehl ratio predictions at 
5.0 km at a wind clearing time for a 1.5 m truncated 
Gaussian beam. In this case, the background wind is 
Bufton which contains a large amount of wind shear 
above 2.5 km. o54–o57 are PHOTON run designations. 
1) AMPERES and 2) PHOTON runs. 
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