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This paper deals with the analysis of influence of a preferred orientation of 
axially symmetric elongated particles on the backscattering phase matrix formation. 
Based on the analysis of relations between the elements of backscattering phase matrix 
a possibility is revealed of determining the angle and the degree of preferred 
orientation of axially symmetric particles. 

 
1. BACKSCATTERING PHASE MATRIX (BPM)  
OF AN ENSEMBLE OF AXIALLY SYMMETRIC  

ELONGATED PARTICLES (ASEP) 
 
The prospects of the polarization technique of 

sounding the atmosphere are mainly connected with the 
possibility of the optically detecting processes of 
appearance and change of the orientation of aerosol 
particles aimed at determining the intensity and direction 
of air flows at different altitudes.  

The question on the influence of preferred 
orientation of cylindrical particles on the polarization 
state of lidar returns (Stokes parameters) was considered 
in Refs. 1 and 2 based on model estimates. This paper 
deals with further studies of this subject from the 
standpoint of particles orientation influence on the BPM 
elements.  

Let us consider an ensemble of horizontally oriented 
ASEP (needles, spheroids, ellipsoids, hexagonal columns), 
i.e., the particles that have a plane of mirror symmetry 
perpendicular to the particles symmetry axis. To specify 
the discussion below we shall analyze only the case with 
circular cylinders, though the final results are valid in the 
majority of cases with other particles mentioned above.  

Let us consider the coordinate system (x, y, z), 
(r, θ, ϕ) where the z axis coincides with the direction of 
radiation incidence and the polarization state of incident 
radiation is set in the plane (x, z), or ϕ = 0. The particle 
orientation, i.e., the orientation of symmetry axis, is 
given by the polar angles (α, β) (Fig. 1). The axes of 
particles elongation are oriented in the plane 
perpendicular to the direction of radiation incidence, i.e., 
β = π/2 .  

Let the orientation of the cylinder with the radius r 
and length l be determined by the angle α. Let the plane 
ϕ = α be the reference plane. It is known3,4 that the BPM 
F(α) of ASEP with respect to this plane and for θ = π has 
the form  

F(r, l, α) = 

⎝
⎜
⎜
⎛

⎠
⎟
⎟
⎞A B 0 0

B A 0 0
0 0 C –D
0 0 D C

, (1) 

 

where the elements A, B, C, and D are the functions of r 
and l and do not depend on α.  

The backscattering phase matrix for the same particle 
Z(α, r, l) but with respect to the reference plane ϕ = 0 can be 
derived from matrix (1) by means of the transformation5  

Z(r, l, α) = L(–α) F(r, l, α) L(–α) . (2) 
 
Analogous transformation (with small correction for the 
angle sign) can be done for the forward scattering phase 
matrix (θ = 0) 
 
S(r, l, α) = L(α) Y(r, l, α) L(–α) , (3) 
 
where L(–α) is the matrix of transformation of Stokes 
parameters for the case of the reference plane rotation by an 
angle α clockwise, if one looks along the wave propagation 
direction 

 
 

L(–α) = 

⎝
⎜
⎜
⎛

⎠
⎟
⎟
⎞1 0 0 0

0 cos2α –sin2α 0
0 sin2α cos2α 0
0 0 0 1

, 

 
and the matrix Y(r, l, α) is analogous to F(r, l, α) but at 
θ = 0 

Y(r, l, α) = 

⎝
⎜
⎜
⎛

⎠
⎟
⎟
⎞G E 0 0

E G 0 0
0 0 H –T
0 0 T H

. 

 
Using expressions (1) and (2) we obtain  

 

Z(r, l, α) =

⎝
⎜
⎜
⎛

⎠
⎟
⎟
⎞A Bcos2α –Bsin2α 0

Bcos2α M
1

– N sin4α Dsin2α

Bsin2α N sin4α M
2

–Dcos2α

0 Dsin2α Dcos2α C

. (4) 

 

where M
1
 = Acos22α – Csin22α, M

2
 = Ccos22α – Asin22α, 

and N = 
(A + C)

2  . 

Let us now consider a monodisperse ensemble of 
cylindrical particles, the axes of which have a preferred 
orientation α

0
. Let f(α, α

0
, κ) be a function of the 

distribution density of orientations of particles axes over the 
angle α. Total backscattering phase matrix of an ensemble 
of spatially oriented elongated particles with respect to the 
reference plane ϕ = 0 can be obtained by integrating over 
all planes α with the weighting function f(α, α

0
, κ)   

P(r, l, α
0
) = ⌡⌠

0

π

 Z(r, l, α) f(α, α
0
, κ) dα . (5) 
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Let us determine the distribution of particle axes 
orientations over the angle α via the Mises distribution 
function6  
 
f(α, α

0
, κ) = exp[κ cos2(α – α

0
)]/ π I

0
(κ) (6) 

 
where J

0
(κ) is the modified zero–order Bessel function of 

the first kind. Mises distribution is a single peaked function 
symmetrical with respect to the point α

c
 = α

0
 (mod π). The 

greater is k, the narrower is the distribution around the 
mode. The distribution density function has two inflection 
points  
 

α
b
 = α

0
 ± 1/2 arccos ( )1/2κ + 1 + 1/4 κ2  

 
in the interval (α

0
 – π/2, α

0
 + π/2).  

Note that the density function of normal distribution 
N(μ, σ) has the inflection points at α = μ ± σ. Thus, the 
value α

k
 = α

b
 – α

0
 is a measure of particle orientations 

spread around the direction α
0
.  

After integration of Eq. (5) and using Eqs. (4) and (6) 
we obtain for the elements of BPM P(r, l, α

0
) of an 

ensemble of polyoriented particles  
 

⎝
⎜
⎛

⎠
⎟
⎞

A i
1
Bcos2α

0
–i

1
Bsin2α

0
0

i
1
Bcos2α

0
U + i

2 
N cos4α

0
–i

2 
N sin4α

0
i
1
Dsin2α

0

i
1
Bsin2α

0
i
2 
Nsin4α

0
–U + i

2 
Ncos4α

0
–i

1
Dcos2α

0

0 i
1
Dsin2α

0
i
1
Dcos2α

0
C

, 

(7) 
 

where U = 
(A – C)

2 , i
1
(κ) = 

I
1
(κ)

I
0
(κ)

 , i
1
(κ) = 

I
2
(κ)

I
0
(κ)

 , I
0
, I

1
, I

2 

are the modified zero–, first–, and second–order Bessel 
functions of the first kind, respectively.  
 

 
 

FIG. 1. Geometry of light scattering by an arbitrarily 
oriented circular cylinder.  

 
All the above considerations have been undertaken 

for the case of an ensemble of polyoriented elongated 
cylindrical particles with fixed size l and r. In the case of 
elongated particles we have l . r, and therefore it is 
physically correct to suppose that the particles of such a 
shape but different size take, under the action of  

horizontal air flows, approximately the same orientation, 
i.e., the particle size distribution is independent of the 
particle orientation distribution function. In this case the 
elements of BPM of a polydisperse ensemble of particles 
are usually estimated by averaging over the size spectrum 
with the weighting function g(r, l)  
 

P
–

(α
0
) = ⌡⌠

l
1

l
2

 ⌡⌠
r
1

r
2

 P(r, l, α
0
) g(r, l) dl dr . (8) 

 
Thus, the dependence on α

0
 is the same as that for a 

monodisperse ensemble  
 

P
–

(α
0
) =

⎝
⎜
⎛

⎠
⎟
⎞A

–
i
1
B
–

cos2α
0

–i
1
B
–

sin2α
0

0

i
1
B
–

cos2α
0

U
–

 + V –i
2
N
–

sin4α
0

i
1
D
–

sin2α
0

i
1
B
–

sin2α
0

i
2
N
–

sin4α
0

–U
–

 + V –i
1
D
–

cos2α
0

0 i
1
D
–

sin2α
0

i
1
D
–

cos2α
0

C
–

.  

(9) 

where N
–

 = (A
–

 + C
–

)/2, U
–

 = (A
–

 – C
–

)/2, and V = i
2 
N
–

cos4α
0
. 

The scattering phase matrix S
–

(α
0
) for the case of 

forward scattering has the form  
 

⎝
⎜
⎜
⎛

⎠
⎟
⎟
⎞G

–
i
1
E
–
cos2α

0
–i

1
E
–
sin2α

0
0

i
1
E
–
cos2α

0
K – i

2
Wcos4α

0
i
2
Wsin4α

0
–i

1
T
–
sin2α

0

–i
1
E
–
sin2α

0
i
2
Wsin4α

0
K+i

2
Wcos4α

0
–i

1
T
–
cos2α

0

0 i
1
T
–
sin2α

0
i
1
T
–
cos2α

0
H
–

. 

(10) 
 

where K = (H
–

 + G
–

)/2, W = (H
–

 – G
–

)/2. 
In our further discussion we shall omit the averaging bar 

above the matrices and their elements while meaning, at the 
same time, that we deal with polydisperse ensembles. Note 
also that  
 

lim
κ→0

 i
1,2

(κ) = 0, (11) 

 

as a result, Mises distribution becomes uniform, and the 
BPM takes the diagonal form  
 

P = 

⎝
⎜
⎜
⎛

⎠
⎟
⎟
⎞A 0 0 0

0 U 0 0
0 0 U 0
0 0 0 C

, (12) 

 

what well agrees with the known conclusion drawn in Ref. 3.  
 

2. THE TECHNIQUE FOR DETERMINATION  
OF THE ANGLE OF PREFERRED ORIENTATION  
AND OF THE DEGREE OF ASEP ORIENTATION 

 
From matrix (9) we can derive the following 

calculational relationships between the elements of BPM 
and distribution parameters α

0
 and κ:  

 

P
11

 – P
22

 = P
44

 – P
33

 ; (13) 

 

cot2α
0
 = – 

P
12

P
13

 ,  cot2α
0
 = – 

P
34

P
24

 ;  (14) 
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i
2
(κ) = 

(P
22

 + P
33

)

(P
11

 + P
44

) cos4α
0

 ;  α
0
 ≠ 

π

8 , 
3π
8  , 

5π
8  , 

7π
8  ; (15) 

 

i
2
(κ) = 

2P
32

(P
11

 + P
44

) sin4α
0

 ;  α
0
 ≠ 0 , 

π

2 , 
π

4 , 
3π
4  . (16) 

 

Relation (13) can serve as a criterion of the BPM 
measurement correctness. The validity of this criterion can be 
shown not only for elongated particles but also for particles of 
an arbitrary shape.  

Relationships (14) make it possible to estimate the angle 
of preferred orientation of particles. However, it often occurs 
in measurement practice so that the values P

12
 and P

13
 or P

34
 

and P
24

 are close to zero. Therefore, it is advisable to use in 

such cases, for determination of α
0
, the elements that 

essentially differ from zero. Taking into account that α
0
 varies 

in the interval (0 – π) from (14) we obtain two values of α
0
 

that differ by π/2  
 

α1
0
 = 

1
2 arccot⎝

⎛
⎠
⎞– 

P
12, 34

P
13, 24

;  

 

α2
0
 = 

1
2 arccot⎝

⎛
⎠
⎞– 

P
12, 34

P
12, 34

+ 
π

2 . (17) 

 

For the sake of simplicity of determining α
0
 one should 

take into account that for the infinite cylinders with the axes 
laying in the scattering plane the elements of BPM (1) B and 
D are negative.  

If P
12

 > 0 (P
43

 > 0) then π/4 < α
0
 < 3π/4. In the 

opposite case of P
12

 < 0 (P
43

 < 0) we have 0 < α
0
 < π/4 or 

3π/4 < α
0
 < π.  

Relationships (15) and (16) complement each other and 
are useful for estimating the degree of particles orientation. To 
do this, it is sufficient to make a table of the function i

2
(κ) in 

the interval (0 – 10) (since i
2
(0) = 0 and i

2
(10) ≈ 1) in order 

to estimate the parameters κ and α
κ
 of the Mises distribution 

by the calculated function i
2
(κ). These parameters determine 

the degree of particle axes spread around α
0
. Since the sum 

P
11

 + P
44

 does not depend on the orientation type, it follows 

from (15) and (16) that the orientation degree is directly 
proportional either to P

22
 + P

23
 or to P

32
. And, as it is seen 

from the elements of matrix (4), relationships (15) and (16) 
are reduced to the equality i

2
(κ) = 1 in the case of strictly 

oriented particles.  
The statement by the authors of Ref. 7 that one can use 

the value 1 – S2
4
 for estimating the degree of orientation 

seems to be incorrect. Here S
4
 is the fourth normalized Stokes 

parameter of scattered radiation in the case when medium is 
irradiated by circularly polarized radiation and measurements 
are being done at the scattering angles θ ≈ 10 and 170°. In 
fact, the value S

4
 for circularly polarized incident radiation 

characterizes (P
14

 å P
44

), where P
14

 is a zero valued element 

of the scattering phase matrix, and, according to the 
conclusions drawn by the authors and as it follows from our 
results [see expressions (9) and (10)] P

44
 does not depend on 

the particles orientation. For this reason the change of this 
value recorded by the authors in their measurements is 
evidently connected with the change of the degree of particles 
nonsphericity under the action of orienting magnetic field but 
not of the orientation itself.  

3. PROPERTIES OF THE ASEP BPM 
 

Measurements of the backscattering phase matrix of 
essentially nonspherical aerosol particles are known 
primarily from laboratory investigations. Nevertheless, it 
is useful to compare our results with the data for 
elongated circular cylinders of γ–Fe

2
O

3
 presented in 

Ref. 7.  
The following theoretical conclusions that can be 

drawn from our results are in a good agreement with the 
data from Ref. 7:  

(a) P
14

 = 0 for all α
0
,  

(b) P
44

 does not depend on α
0
, and P

33
 depends on α

0
, 

(c) for α
0
 = 0 the BPM has the form  

 

P(0) =

⎝
⎜
⎛

⎠
⎟
⎞

A i
1
B 0 0

i
1
B U + i

2 
N 0 0

0 0 – U + i
2 
N –i

1
D

0 0 i
1
D C

. (18) 

 
The BPM for α

0
 = π/2 has analogous structure. The 

difference is that the elements P
12

 (P
21

) and P
34

 (P
43

) change 

sign. At the beginning of their article the authors of Ref. 7 
arrived at the same conclusion, but when analyzing the 
behavior of P

12
 they concluded that this element of BPM was 

negative for all α
0
. 

Among other most interesting results following from the 
view of BPM one can point out the following:  

(a) For α
0
 = π/4 the BPM has the form  

 

P( )π4  =

⎝
⎜
⎛

⎠
⎟
⎞

A 0 –i
1
B 0

0 U – i
2 
N 0 i

1
D

i
1
B 0 – U – i

2 
N 0

0 i
1
D 0 C

. (19) 

 
The BPM for α

0
 = 3π/4 has the similar structure. Difference 

is that the elements P
13

 (P
31

) and P
24

 (P
42

) have opposite 

signs.  
(b) For α

0
 = π/8 the BPM has the form  

 

P( )π8  =

⎝
⎜
⎜
⎛

⎠
⎟
⎟
⎞A

2
2  i

1
B –

2
2  i

1
B 0

2
2  i

1
B U –i

2 
N

2
2  i

1
D

2
2  i

1
B i

2 
N – U –

2
2  i

1
D

0
2

2  i
1
D

2
2  i

1
D C

. (20) 

 

For α
0
 = 5π/8 the BPM is similar, only the elements 

P
13

(P
31

), P
24

(P
42

), P
12

(P
21

), and P
34

 (P
43

) have opposite 

signs. 
(c) For α

0
 = 3π/8 the BPM has the form  

 

P( )3π
8  =

⎝
⎜
⎜
⎛

⎠
⎟
⎟
⎞A – 

2
2  i

1
B – 

2
2  i

1
B 0

– 
2

2  i
1
B U i

2 
N

2
2  i

1
D

2
2  i

1
B –i

2 
N – U

2
2  i

1
D

0
2

2  i
1
D – 

2
2  i

1
D C

.(21) 
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The structure of the BPM at α
0
 = 7π/8 is similar to this one 

except for signs of the elements P
13

 (P
31

), P
24

 (P
42

), P
12

 

(P
21

), and P
34

 (P
43

), which are opposite.  

Two curves of P
12

 and P
13

 for α
0
 = 70 were presented in 

Ref. 7. Their behaviors at the scattering angles θ close to 170 are 

in a good agreement with the theoretical estimates in Eq. (17). 
Measurement results presented in Ref. 7 confirm 

(accurate to a minus sign) relationship (13) for diagonal 
elements of the scattering phase matrix. This relationship is 
also obtained in theoretical calculations for spheroids5 and 
hexagonal crystals8 as well as it takes place in experiments 
with ice fogs.8,9  

Thus, the analysis made shows that although the 
orientation anysotropy of nonspherical particles can result in 
essential variations of the aerosol scattering parameters, it is 
possible to detect reliably the presence and degree of the 
preferred orientation of ASEP in a specially arranged field 
experiment, using the properties of BPM (relationships 
between the BPM elements).  

The work has been done under the financial support of 
the Russian Fundamental Studies Foundation (project code 
93–05–9376). 
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