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This paper deals with estimating the sensitivity of equal– and unequal–arm 
laser deformographs of various modifications. Estimates account for measurement 
errors caused by: (1) stability of laser radiation frequency; (2) temperature, 
humidity, and pressure variations; and, (3) noise of photoelectric devices. It is 
shown both theoretically and experimentally that in order to increase the sensitivity 
of deformographs, their supports should be mounted on media with different 
characteristics and pendulum systems should be used. Some results of correlated 
measurements with two laser deformographs spaced 250 km apart are presented. 

 
In 1979 one of the first laser deformographs in the USSR 

was created at the Pacific Institute of Oceanography (PIO) of 
the Far–Eastern Scientific Center of the Academy of Sciences 
of the USSR under the supervision of 
Ph.D. U.Kh. Kopvillem. Although at present laser 
deformographs of the PIO of the Far–Eastern Branch of the 
Russian Academy of Sciences harness alternative electronic and 
opto–mechanical base and work on radically different 
principles, a lot of the credit must go to U.Kh. Kopvillem for 
development of these instruments and study of their 
potentialities in the USSR. 

Modern laser deformographs measure the shifts of 
the earth crust to an accuracy of 10–10 m in the frequency 
range up to 103 Hz. All the existing laser deformographs 
may be divided into two classes of equal– and unequal–
arm deformographs. Since 1979 the possibilities of using 
the instruments of both types in the experiments with a 
modified Michelson interferometer have been investigated 
comprehensively at the PIO. A comparison between the 
data obtained in the frequency range up to 103 Hz with 
the use of the equal– and unequal–arm deformographs 
placed at the Cape Schultz demonstrated that: 

(a) sensitivities of both instruments remain identical 
in the frequency range 1–103 Hz; 

(b) at frequencies below 1 Hz sensitivity of the 
unequal–arm deformograph is higher provided both 
instruments are mounted on uniform base; 

(c) differential properties of the base medium, on 
which the instrument supports are mounted, make it 
possible to significantly increase the deformograph 
sensitivity at lower frequencies; 

(d) mounting the deformograph reflector on a 
partially damped pendulum system significantly improves 
the instrumental sensitivity at high frequencies; 

(e) if items (c) and (d) are exactly satisfied, laser 
deformographs measure practically the absolute shears, 
and the sensitivities of both types of the instrument 
become identical. 

A choice of an experimental site is of great 
importance for experiments in the study of seismo–
acoustic processes. The sea–land transition zone features 
the block, irregular, and seismically active structure, in 
which not only the known signals are resonantly  

amplified, but also the other linear and nonlinear 
phenomena are observed. In particular, the use of the 
laser deformographs in Primorskii Krai made it possible 
to partially study the structure of the transient zone, its 
spectral characteristics, and amplification of signals of 
natural and artificial origin. In addition, the data of 
deformographs are used to study seismo–acoustic 
processes of oceanic origin and their transformation at the 
hydrosphere–lythosphere interface. 

 
SPECIFICATIONS OF THE EQUAL– AND 

UNEQUAL–ARM DEFORMOGRAPHS AND THEIR 
POSSIBLE APPLICATIONS 

 
Researchers developing laser deformographs, 

investigating their applications, and trying to improve 
their sensitivity, have to pay particular attention to: 

1) stability of the laser frequency; 
2) account and decrease of the noise of photoelectric 

units; 
3) temperature, baric, and other external effects; 
4) design features and placement of the instruments. 
In accordance with the foregoing, we consider below 

the ways of accounting for such factors when operating 
with the equal– and unequal–arm modifications of laser 
deformographs. 

1. Stability of laser frequency. Since 1979 till 1988 
we had performed seismo–acoustic studies with an equal–
arm OKG–13 LG–78 105–m laser deformograph without 
forced frequency stabilization. We now estimate the level 
of noise due to instability of laser radiation frequency 
Δν/ν0. We define the frequency separation of the 

fundamental modes of laser oscillations as 
 

Δν = 
c

2 n L , (1) 

 

where c is the speed of light and nL is the optical length 
of a path between mirrors. The laser cavity being 
approximately 20 cm long, we find Δν = 7.5⋅108 Hz. Let 
us consider the number of modes that fit into the cavity 
of a He–Ne laser of length L = 20 cm due to the Doppler 
effect. First we find the Doppler half–width 
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Δν = 
2νc

c  ( )2 κ T ln2
M

1/2
 , (2) 

 
where νc is the frequency of the line center; κ is 

Boltzmann's constant; M is the atomic mass, in atomic 
units; and T is the temperature. If we assume that the 
atomic temperature is of the order of 500 K, the Doppler 
width of the Ne line for a He–Ne laser generating at a 
wavelength of 6328 Å will be approximately 1700 MHz. 
Thus two modes, corresponding to the two axial 
oscillations, fit into this width, that is, the minimum 
frequency stability for such a He–Ne laser is controlled by 
the mode–to–mode transition and is equal to 
 
ΔνD = 1700 MHz . (3) 

 
The frequency drift in gas lasers is primarily produced 

by either mechanical or thermal instabilities of the optical 
cavity length nL. The above two effects control the actual 
instability of the operating laser. We define its instability 
by the expression 
 
Δλ

λ
 = 

Δ(n L)
n L  . (4) 

 
Assuming nL to be linear dependent on time within τ0, we 

find  
 
Δλ(τ0)

λ
 = 

τ0

n L 
d(n L)

dt  . (5) 

 
A change in length of the composite cylinders with 

time may be found from the first order of the thermal 
expansion coefficients for the materials from which the laser 
is made. This coefficient for Invar is 5⋅10–7 deg–1. 
Expansion of the laser cylinder is 
 

dL = αc L d T or αc = 
1
L 

d L
d T . (6) 

 

The laser wavelength instability is then equal to 
 
Δλ(τ0)

λ
 = 

τ0 n αc L d T

n L d T  = τ0 αc 
d T
d t  = 5⋅10–8 , (7) 

 

where τ0 is the measurement period of the order of 

120 hours, while the rate of temperature variation is 
 

d T
d t  = ± 0.1 deg/[τ0] . (8) 

 

Expression (8) may be written down in terms of Δν/ν with 
allowance for τ0 and dT/dt 
 

Δν

ν
 = 5⋅10–8 . (9) 

 

Changes in the refractive index of the medium lying 
between a laser gas–discharge tube and external mirrors are 
caused by variations in the temperature T, pressure P, and 
humidity h. Once again, considering only the first order of 
the coefficients at T = 293 K, P = 760 Torr, h = 8.5 Torr, 
and λ = 0.63⋅10–6 m, we determine the values of the 
corresponding coefficients 
 

βT = 
1
n 

dn
dT = – 0.3⋅10–7 deg–1 , (10) 

 

βP = 
1
n 

dn
dP = 3.6⋅10–7 Torr–1 , (11) 

 

βh = 
1
n 

dn
dh = 5.7⋅10–8 Torr–1 . (12) 

 

These expressions are applicable to the part g of the cavity, 
which is not occupied with the discharge tube (we assume 
g = 0.8). Let the parameters of air inside the laser cavity 
vary at the rates dT/dt = 0.10/(measurement time) and 
dh/dt = 0.5 Torr/(measurement time). Then we obtain 
 

⎝
⎛

⎠
⎞ΔλL(t)

λL n(T)
 = g τ βT 

dT
dt  = ± 7.4⋅10–8 , (13) 

 

⎝
⎛

⎠
⎞ΔλL(t)

λL n(P)
 = g τ βP 

dP
dt  = ± 8.6⋅10–8 , (14) 

 

⎝
⎛

⎠
⎞ΔλL(t)

λL n(h)
 = g τ βh 

dh
dt = ± 2.28⋅10–8 . (15) 

 

Thus, the stability of laser frequency (neglecting the 
expansion of the Brewster windows at the ends of the 
discharge tube and variations in the refractive index of a 
plasma) is 
 

⎝
⎛

⎠
⎞ΔλL

λL total
 = ± {(5)2 + (7.4)2 + (8.6)2 + (2.28)2}1/2 × 

 

× 10–8 = 1.26⋅10–8 . (16) 
 
The strain of the deformograph supports is 
 
Δl
l  = – 

Δλ

λ
 . (17) 

 

If the interferometer arms in the equal–arm 
configuration are equalized to an accuracy of 10–2, the shear 
of the interference pattern may be measured to the accuracy 
Δl = 1.26⋅10–9 m for the above–indicated frequency 
stability. Interferometric techniques used in our 
deformographs with the equal and unequal arms are capable 
of measuring the shear of the section of an interference 
fringe to an accuracy of λ/2⋅10–3, where λ is the He–Ne 
laser wavelength. 

Since 1989 seismo–acoustic oscillations have been 
studied at the PIO FEB RAS using a 52.5–m unequal–arm 
laser deformograph. In 1991 simultaneous measurements 
were performed using two unequal–arm laser 
deformographs, with 52.5–m and 10.5–m arms, spaced 
250 km apart. We employed frequency–controlled LGN–
303 lasers with long–term stability of 10–8 attendant to 
slow temperature variations within ± 10 K. When the 
temperature varied within 0.1 K, the laser frequency 
stability could be improved by 1–2 orders of magnitude. In 
certain cases an LGN–303M laser was used, whose 
frequency stability was an order of magnitude higher than 
that of the LGN–303. Thus, with the above–indicated 
frequency stabilities of the LGN–303 and LGN–303M, 
displacements of the supports of the 52.5–m arm 
deformograph can be measured to the accuracy 
 

Δl = – l 
Δλ

λ
 = 5.2⋅10–8 – 5.2⋅10–9 m , (18) 

 

while those of the 10.5-m arm deformograph – to the accuracy 
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Δl = – l 
Δλ

λ
 = 1.05⋅10–8 – 1.05⋅10–9 m . (19) 

 
2. Noise of photoelectric equipment. When designing 

a laser deformograph one has to choose between a 
photomultiplier and a photodiode as its photodetector. In 
connection with this we evaluate the noise of a standard 
photomultiplier PÉU–77 and PD–24K photodiode. Weak 
variable optical signal is measured by the laser 
interferometer against a high–level constant background 
illumination. In this case the minimum threshold sensitivity 
is determined by the shot noise of the photodetector instead 
of its dark–current noise. The ratio of the mean–square 
shot noise of the photomultiplier Kpm to the corresponding 

mean–square value of the photodiode Kd is  

 

S = 
Kpm

Kd
 = 
⎣
⎡

⎦
⎤2(1 + β) Δf � ν

Ppm ηd

1/2
 
⎣
⎡

⎦
⎤2 Δf � ν

Ppm ηd

1/2
 , (20) 

 
where β describes the contribution of the secondary electron 
emission, usually taken to be equal to 1.5; Δf is the 

reproduced frequency band; � is Planck's constant; ν is the 

optical radiation frequency; Ppm and Pd are the powers of 

illumination of the photocathodes; and, ηpm and ηd are the 

quantum efficiencies of these photocathodes. If we assume 
ηd = 0.6, Pd = 10–2 W, ηpm = 8⋅10–3, Ppm = 7.3⋅10–4 W, 

then S g 50. Thus choosing the PD 24K for a photodetector 
of the laser deformograph is dictated by the preceding. 

The intensity of radiation incident on the photodiode I 
is described by the following expression: 
 

I = I1 + I2 + 2 I1 I2 cos ⎣
⎡

⎦
⎤4π(L2 – L1)

λ
 , (21) 

 
where I1 and I2 are the intensities of the interfering beams, 

L1 and L2 are the lengths of the interferometer arms, and λ 

is the He–Ne laser wavelength. For I1 = I2 we have 

 

I = 4 I0 cos
2 

2 π l
λ

 , (22) 

 
where 2 l = 2(L2 – L1) is the difference between the optical 

lengths of the paths of the two interfering beams. According 
to Eq. (22) the output photodetector current is 
 

i = i0 cos
2 

2 π l
λ

 , (23) 

 
where i0 = 4I0χ and χ is the photodetector sensitivity. It 

follows from Eq. (23) that variations in the output current 
will be caused by changes in the difference between the 
optical lengths of the interferometer arms l and by changes 
in the wavelength λ. In addition noise components appear in 
the current associated with the noise of photoelectric 
equipment Δi1 and instability of the laser output power Δi2. 

Differentiating Eq. (23) with respect to l and λ and adding 
Δi1 and Δi2, we obtain 

 

Δi = i0 sin( )4 π l
λ

 { }2 π

λ
 l ± 

2 π l
λ2  Δλ  ± Δi1 ± Δi2 . (24) 

 
 

The value of Δi is maximum at 4πl/λ = π/2 and 
 

Δl = 
Δi
i0

 
λ

2π
 ± l 

Δλ

λ
 ± 

Δi1
i0

 
λ

2π
 ± 

Δi2
i0

 
λ

2π
 , (25) 

 

where 
Δi
i0

 
λ

2π
 are seismo–acoustic oscillations and all the 

other components are noise. Noise due to the instability 
of the laser frequency Δλ/λ has been analyzed above. For 
commercial He–Ne lasers the level of relative power 
fluctuations is about several percent, that is, Δi2/i0 g 10–2. 

Hence the threshold measurement sensitivity is about 10–9 m. 
We now estimate the sensitivity threshold due to the 

shot noise of the photodetector. The minimum threshold 
sensitivity of the Michelson interferometer with respect to 
absolute displacements of the mirrors, limited only by the 
shot noise of the photodetector, is given by the expression 
(see Refs. 1 and 2) 
 

Δlmin = 
1
4π

  
⎩
⎨
⎧

⎭
⎬
⎫λ � c Δf

q P0

1/2
 , (26) 

 
where P0 is the laser output power, Δf is the receiver 

bandwidth, and q is the detector quantum yield. 
Assuming P0 = 1⋅10–3 W, q = 0.25, c = 3⋅108 m/s, 

λ = 0.63⋅10–6 m, and � = 6.626⋅10–34 J⋅s, we find 

 

Δlmin = 1.78⋅10–15 Δf m/Hz1/2 . (27) 

 
For Δf = 103–104 Hz we obtain Δlmin=1.78⋅10–13 m, so 

that it has no effect on the measurement accuracy. 
3. Thermal, baric, and other effects. Figure 1 shows 

the block–diagram of the laser deformograph, which can 
be implemented in two different modifications, namely, 
with equal arms, when the optical path lengths from the 
semi–transparent mirror 8 to the reflectors 1 and 2 are 
equal to each other, and with unequal arms, when the 
reflector 2 is removed and mirror 10 is set at an angle of 
90° relative to the mirror 9 so that the beam reflected 
from the mirror 10 falls at the point 8 of the semi–
transparent mirror. The mirrors 9 and 10 are clamped on 
piezoceramic cylinders. A 25–kHz driving signal is fed to 
piezoceramics of the mirror 9, while piezoceramic of the 
mirror 10 closes the feedback loop of a recording system, 
that is, the signal being processed is fed to it. 

The plane–parallel mirrors 9 and 10 are clamped on 
piezoceramic cylinders 10–2 m in height. These mirrors are 
2⋅10–3 m thick. The maximum error in the measurement of a 
shear reaches Δl = ± 0.2⋅10–8 m when the temperature varies 
within ± 0.1 K. The measurement error due to the variations 
of length of the Invar plate, to which the mirrors 9 and 10 are 
clamped, may reach Δl = ± 0.2⋅10–8 m. The total error due to 
temperature, pressure, and humidity variations within the air 
gaps of the interferometer is Δl = ± 1.1⋅10–9 m. When 
operating with deformograph equipped with air–filled or 
evacuated tubes, the pressure in the tube must be within 
ΔP=2⋅10–10/0.4⋅10–6 = 5⋅10–4 mm Hg, so that to provide the 
sensitivity Δl/l ~ 2⋅10–10. Such variations of pressure in the 
tube (10–4 mm Hg) safely guarantee the necessary 
measurement accuracy. Now we estimate the temperature 
variations which would not affect the measurement accuracy  
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at P = 10–4 mm Hg and ε = δl/l = 2⋅10–10. We have  
δl/l = α nT = 2⋅10–10 ΔT; whence it follows that 

ΔT = δl/(l⋅2⋅10–6) = 1 deg. Thus when the temperature is held 
at a level of constant ± 0.1 K, this enables us to eliminate the 
effect of this error on the measurement accuracy. 

 

 
 
FIG. 1. Block diagram of the laser deformograph: 1 and 
2) coner–cube reflectors, 3 and 4) steel light guides, 
5) laser, 6) optical shutter, 7) collimator, 8) semi–
transparent plate, 9 and 10) plane–parallel mirrors, 
11) photodiode, 12) resonance amplifier, 13) synchronous 
detector, 14) time–delay circuit, 15) reference frequency 
generator, 16) power amplifier, 17) differential integral 
amplifier, 18) level reset system, and 19) recording unit. 

 
When one uses evacuated tubes, the change, due to the 

temperature variations, in the length of the tube used as a 
vacuum cell will also result in variations of the optical path 
length, since as the tube elongates, a certain part of the 
overall beam path in air is substituted by the same path length 
in vacuum. A temperature change of 10–2 K will result in a 
path length change Δl = Δl0(n – n0), where Δl is the change in 

the tube length (in case the tube is made of stainless steel we 
have δl0 = αlΔT = 5.5⋅10–6 m) and (n – n0) is the difference 

between the refractive indices of air and vacuum. This means 
that the change in the optical path length is Δl = 5.5⋅10–10 m. 
As can be seen, this interference also does not affect the 
measurement accuracy. 

The change of the tube length due to changes in 
atmospheric pressure is given by the formula 
 
Δl = ΔF l/A Y , (28) 
 
where ΔF is the change in the force of atmospheric pressure 
exerted at the end of the tube due to the change in the 
atmospheric pressure; l is the tube length (52.5 m or 
10.5 m); A is the cross–sectional area of the tube walls; 
ΔF = πr2ΔP, where r is the tube radius; and, ΔP is the 
change in the atmospheric pressure. Since 
ΔF = 3.14⋅106 dyn, l = 5⋅103 cm (or 1⋅103 cm), A = 19 cm2,  

Y = 2⋅1011 N/m2, we find Δl = πr2ΔPl/AY, and hence 
Δl = 5.7⋅10–10 m (or Δl = 1.1⋅10–10 m). 

Making the arms of the laser deformograph equal to each 
other to an accuracy of 10–2 m by mechanical and electro–
optical methods, we obtain the error Δl = 0.7⋅10–8 m during 
the measurement period of about 100 hrs. The total error for 
the two unequal–arm instruments with 52.5–m and 10.5–m 
arms is 0.8⋅10–8 m, respectively. It should be noted that the 
temperature variations in the thermally insulated cells are less 
than 0.1 K and are primarily caused by the day–to–day 
variations in the external temperature. If we limit our studies 
to seismo–acoustic oscillations within the frequency range 
10–4–103 Hz, the measurement error decreases by 1–2 orders 
of magnitude, so that the measurement accuracy 
correspondingly increases. 

4. Constructional and mounting features of the 
deformograph. Let us consider the response of the medium, 
on which the laser deformograph is mounted, to a seismo–
acoustic wave propagating through this medium. For 
deformograph of either type with arms oriented along the z 
axis the measurable displacement is  
 

ΔU = 2U(2) – U(1) – U(3) , (29) 
 

where U(1) = A e
–iα1z ei(ξχ–ωt) , U(2) = A e

–iα2(z+L*)
 ei(ξχ–ωt) , 

U(3) = A e
–iα2(z+L*+L)

 ei(ξχ–ωt) , αi = κi cosθi , κi = 2π/λi 

(i = 1, 2, 3) , L* n L for the unequal–arm deformograph; θi 

is the angle of radiation incidence, λi is the radiation 

wavelength in the medium, and 
ξ = κ1sinθ1 = κ2sinθ2 = κ3sinθ3. Below we compare the cases 

of equal–arm (L = L* = 50 m) and unequal–arm (L* = 0.1 m 
and L = 50 m) deformographs mounted on various media.  

Let us consider a homogeneous medium. In this case 
α1 = α2 = α3, κ1 = κ2 = κ3, θ1 = θ2 = θ3 and 

c1 = c2 = c3 = 3 km/s. As seen from Eq. (29), 

displacements measured in the low–frequency range 
(f > 1 Hz) differ strongly for the equal– and unequal–arm 
deformographs mounted on the identical homogeneous media 
when the incident wave remains the same. Specifically, the 
sensitivity of the unequal–arm deformograph appears to be 
much higher than that of the equal–arm deformograph in 
the frequency range 10–2–10–4 Hz. However, the 
sensitivities of both deformographs are comparable or the 
sensitivity of the unequal–arm laser deformograph is 
somewhat higher in the high–frequency range. 

Then, following Ref. 3, we consider two interfacing 
elastic half–spaces with different densities ρ1 and ρ2, 

longitudinal wave speeds c1 and c2, and transverse wave 

speeds b1 and b2. Let the longitudinal wave propagate at the 

angle θ to the interface through the half–space with larger ρ 
and c. Let the z axis be oriented perpendicular to the interface 
and opposite to the incident wave, while the x axis – along 
the interface. Then, according to Ref. 3, we obtain a system of 
equations describing the potentials of the longitudinal (ϕ) and 
transverse (ψ) waves in half–spaces 1 and 2  
 

⎩
⎨
⎧ϕ = ϕ′ e–iαz ei(ξχ–ωt) + ϕ = ϕ′′ e–iαz ei(ξχ–ωt) ,

ψ = ψ′ e–iβz ei(ξχ–ωt) ,

 (30) 

 

⎩
⎨
⎧ϕ1 = ϕ′′1 e

–iα1z ei(ξχ–ωt) ,

ψ1 = ψ′1 e
–iβ1z ei(ξχ–ωt) .

 (31) 
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We solve this system with the boundary conditions [zz] = 0, 

[zx] = 0, [Ux] = 0, and [Uz] = 0, where zz and zx are the 

components of the stress tensor. In general the displacement 
U may be found from the expression relating the scalar 
potential of ϕ to the vector potential of ψ: 
 

U = grad ϕ + rot ψ . (32) 
 

From the solution of equations (30)–(32) with the above–
indicated boundary conditions we obtain the ratios of the 
displacements along the z axis in the first and second media  
 

U(1)

U(2) = 
c1

c Wl l
 . (33) 

 

Solving equations (30)–(33) we find the expressions 
relating ϕ′, ϕ′′, ψ′, ϕ1′′, and ψ1′′. Let us consider the two media 

with the following characteristics: ρ1 = 2.7 g/cm3, 

c1 = 6 km/s, ρ2 = 1.5 g/cm3, c2 = 1.5 km/s, b1 = 3.5 km/s, 

and b2 = 0.875 km/s. The unequal–arm deformograph 

(L1 = 50 m and L2
* = 0.1 m), when the wave is incident at 

θ = 0° with respect to the interface, has two supports 
separated by a distance of 0.1 m from each other which rest on 
the medium with the parameters of ρ1, c1, and b1, and the 

third support located at a distance of 50 m, which rests on the 
medium with the parameters ρ2, c2, and b2. From Eq. (29) and 

the solution of Eqs. (30)–(33) we find ΔU = 2⋅10–5 at  
f = 10–4 Hz and ΔU = 2⋅103 at f = 10–2 Hz (A = 1); if the 
angle of incidence is θ = 30°, we have ΔU = 7.4⋅10–1 at 
f = 10–4 Hz and ΔU = 6⋅10–1 at f = 10–2 Hz. The equal–arm 
deformograph (L = L* = 50 m) has two supports which rest 
on the medium with the parameters ρ1, c1, and b1 and the 

third support which rests on the medium with the parameters 
ρ2, c2, and b2. For such a deformograph referring to Eq. (29) 

and the solution of Eqs. (30)–(33), we find ΔU = 1⋅10–7 at 
f = 10–4 Hz and ΔU = 4.4⋅10–5 at f = 10–2 Hz when the 
radiation is incident at the angle θ = 0°. At θ = 30° we obtain 
ΔU = –7.4⋅10–1 at f = 10–4 Hz and ΔU = –6⋅10–1 at  
f = 10–2 Hz (A = 1). 

Let us consider an inhomogeneous layered medium. 
Then, according to Ref. 4, the expression for the 
displacement of supports acquires the form 
 

U i
(n) = 

i κj
ω2 ρ(n)

 Tij e
–iκLz L

(n)

 , (34) 

 

where n = 1, 2, 3: z L
(n) are the corresponding coordinates of 

the supports; Tij is the wave amplitude for the elastic 

constant tensor. Let us consider the ratios U i
(2)/U i

(1) and 

U i
(3)/U i

(1) for the equal and unequal–arm deformographs 

positioned as described above. For the equal–arm 
deformograph whose first two supports rest on the medium 
with the density ρ1 = 2.7 g/cm3 and the third support rests 

on the medium with ρ2 = 1.5 g/cm3 we have 
 

U i
(2)

U i
(1) ≅ e

–iκLL ,  
U i

(3)

U i
(1) ≅ 

ρ1 c1

ρ2 c2
 e

–i2κLL . (35) 

 

For very low frequencies κLL n 1 we find U i
(2)/U i

(1) ∼ 1 

and U i
(3)/U i

(2) ∼ 7.2. 

The total relative displacement of the supports for 
both deformographs is determined by the displacement of 
the supports mounted on the medium with the parameters 
ρ2, c2, and b2. 

Thus, to increase the sensitivity of laser deformographs 
with the equal and unequal arms, their supports should be 
mounted on the media with different properties. The relative 
displacement of the supports of the equal–arm deformograph 
is equal to that of the unequal–arm deformograph in an ideal 
model situation. 

To improve the laser deformograph sensitivity in the 
high–frequency range, a physical pendulum with oscillation 
period T = 3 s (i.e., f0 = 0.3 Hz) is mounted on the reflector. 

For frequencies f . f0 the pendulum–mounted reflector 

suffers practically no displacement. The measurable 
displacement is then determined by the displacements of the 
central unit of the deformograph and of the second reflector 
(for the equal–arm modification). At frequencies close to f0 

the measurable displacement is primarily determined by the 
displacement of the pendulum–mounted reflector. 

 
MEASUREMENT RESULTS 

 
Here we present some data of measurements with the 

equal– and unequal–arm laser deformographs (with 52.5–m 
arm) and compare them. Both deformographs were placed at 
the Cape Schultz, enclosed in one and the same underground 
bunker, and rest on the same supports. Measurements with 
these two instruments were made at different times. Records 
with identical noise levels (P0) were selected for further 

analysis. Table I presents certain comparative results of 
processing of the data obtained with the equal–arm 
deformograph (over the periods 15 – 16.09.85 and  
24 – 27.09.86) and the data of the unequal–arm 
deformograph (over the periods 22 – 23.08.91 and  
01 – 02.09.91). These data series were subject to harmonic 
analysis using the Fast Fourier transform (FFT), after the 
linear trend was estimated and removed.  

Since there occur the spectral maxima of various 
intensity in the frequency ranges of interest, the data 
segments were further weighted using the 4–term 
Blackman–Harris window  
 

W(n) = 0.35875 – 0.48829 cos( )2 π n
N  + 

 

+ 0.14128 cos( )4 π n
N  – 0.01168 cos( )6 π n

N  , 

 

y(n) = W(n) x(n) , (36) 
 

so as to suppress the side lobes of the strongest maximum. 
Here x(n) are the initial data and y(n) are the processed 
data. This window efficiently suppresses side lobes, so 
that their level is no more than 74 dB of the principal 
maximum. Thus in the spectra obtained with the use of 
such windows the maxima exceeding the level of 70 dB 
cannot be attributed to side lobes. The program FFT 
processes the series of 1024 points. If the initial series 
was shorter (the sampling period was either 1 min or 
0.5 min), it was padded with zeros to obtain 1024 point 
after subtraction of the trend and data processing with 
the windows. 

The problem of selecting the length of a time series for 
FFT processing is as follows: in the case of a stationary series, 
the accuracy of reconstruction of the amplitudes and  
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frequencies of the spectral maxima increases with the 
period of measurements. However, it has been found from 
practical experience that seismo–acoustic processes 
largely fail to comply with the criteria of stationarity. 
This results in the fact that increase in the length of a 
record beyond a certain limit (which is different for 
different frequencies) is futile at best, and sometimes may 
even decrease the accuracy of reconstruction of the 
amplitude and frequency of the spectral peak we are  

interested in. That happens, in particular, when the 
studied signal is amplitude modulated, or when its 
frequency (or phase) changes. In connection with this, to 
study the dynamics of the temporally varying spectral 
peaks, the length of the analyzed data segments must be 
shorter than the characteristic time of frequency, 
amplitude, and phase variations. That is why only 8–
14 hrs segments were selected for further analysis. Table I 
lists several processed segments of records. 
 

TABLE I. 
 

Tone of the Earth's 
free oscillations 

From 
Refs. 5-6 

Equal–arm deformograph Unequal–arm deformograph 

 (EFO)  1985 1986 August 1991 September 1991 
 Period, 

min 

Period, 
min 

log (P/P0),

dB 

Period, 
min 

log (P/P0),

dB 

Period, 
min 

log (P/P0),

dB 

Period, 
min 

log (P/P0),

dB 

0S0 
20.46 20.5 5.1 20.6 8.3 21.3 14.8 20.5 12.9 

0S2 
53.89 53.2 3.6 53.9 9.4 53.9 16.4 53.9 12.5 

0S3 
35.68 36.2 6.7 35.9 8.3 35.6 8.7 35.3 13.7 

0S4 
25.79 26.0 5.7 26.0 4.9 26.2 11.6 24.4 9.8 

 

It can be seen from the table that the amplitudes of 
low frequency peaks retrieved from the data of the 
unequal–arm deformograph are 2–3 times as large as 
those of the equal–arm deformograph. On separate time 
intervals the amplitudes of maxima are comparable at 
certain frequencies for both deformographs. We selected 
only the data with low level of seismo–acoustic 
background, when local earthquakes and large remote 
earthquakes were completely absent (only remote  

earthquakes with the magnitude M ∼ 5 took place over the 
measurement period). It follows from the analyses of numerous 
records of both instruments that the sensitivity of the equal–
arm deformograph in the low–frequency range is 2–3 times 
lower than that of the unequal–arm instrument, while these 
sensitivities are comparable in the high–frequency range. The 
significant increase in the sensitivity of the equal–arm 
deformograph was obtained at the expense of differential 
properties of the medium during mounting of the instrument. 

 

 
 
 a b 
FIG. 2. Synchronous sections of records of the deformograph located near Kornilovka (a) and at the Cape Schultz (b). Period 
of observation is 4 hr 16 min. 
 

   
 
 a b 
 

FIG. 3. Same as in Fig. 2. Period of observation is 1 hr 06 min. 
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 a b 
 

FIG. 4. Same as in Figs. 2 and 3. Period of observation is 52 min. 
 

In conclusion we present the data of correlated 
measurements performed by the two separated unequal–arm 
laser deformographs. One laser deformograph with the 52.5–m 
arm was enclosed in a concrete underground bunker located at 
the Cape Schults. The second 10.5–m arm deformograph was 
placed on the ground 250 km apart, in village of the 
Anuchinskii District of Primorskii Krai, and partially 
thermally insulated. Figures 2–4 show the examples of 
correlated records of the two instruments for separate time 
periods obtained with different sampling periods. Comparing 
these records, we may conclude that: 

(1) low–frequency deformation processes in the above–
indicated regions are similar in behavior and 

(2) records of the 10.5–m arm deformograph feature 
much stronger high–frequency signals because of ground–
based location of this deformograph and stronger effect of 
anthropogenic interference. 
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