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A matrix method of solving the Bloch optical equations is proposed. Some 
particular solutions for modulated electric field are discussed. The advantages of the 
proposed method over the conventional approaches are demonstrated. 

 
It is well known (see, for example, Ref. 1) that the 

equations describing the temporal behavior of the density 
matrix of the two–level system excited by a resonant field 
with allowance for the collisional and radiative relaxation 
phenomena in the dipole–interaction approximation form 
closed system of three first–order differential equations 
(Bloch equations). In the case of constant amplitude and 
phase of the exciting field, the coefficients in the Bloch 
equations are constant as well, and these equations can be 

easily solved.
2
 In the case of sufficiently high amplitude of 

the exciting field, the solution for the level population 
difference of the system has the form of exponentially 

decaying oscillations with the Rabi frequency Ω
R
 = dE/�, 

where d is the dipole transition moment and E is the field 
amplitude. When the field amplitude becomes so much low 
that the inequality Ω

R
 < Γ

2
 holds true, where Γ

2
 is the 

transition linewidth, the population difference decreases 
exponentially to its equilibrium value before even a single 
transition occurs. Consequently, the population difference 
in the two–level system excited by a resonant field 
oscillates only in the case of a sufficiently high field 
amplitude. For time–dependent amplitude and phase of the 
exciting field, the Bloch equations involve variable 
coefficients, and the general solution for arbitrary functions 
cannot be obtained. In the particular case of the periodic 
amplitude modulation in which the field amplitude is a 
periodic function of time (this field can be interpreted as a 
set of monochromatic components with equal amplitudes 
and the same spectral intervals between any adjacent 
components), the Bloch equations involve periodic 
coefficients and can be solved, as a rule, by application of 
the Floquet theorem. In accordance with this theorem, the 
solution of these equations can be represented by a series in 

the modulation frequency harmonics.
3
 Fenenille and 

Schweighofer4 as well as Toptygina and Fradkin
5
 pioneered 

in applying the Floquet theorem to the solution of the 
Bloch equations for amplitude–modulated exciting field. 
Now this method is widely used for solving the Bloch 

equations with periodic coefficients.
6–10

 The main drawbacks 
of application of the Floquet theorem are the following. 
First, harmonic amplitudes are represented in terms of 
continued fractions. This necessiates their numerical 
summation. Second, this theorem is inapplicable for a 
periodic modulation of the parameters of the exciting field. 

The matrix method of solving the systems of linear 
differential equations used for the solution of the Bloch 

equations in the case of stochastic phase modulation
15
 or 

periodic amplitude modulation16 of the exciting field has no  

above–enumerated drawbacks. It allows one to derive the 
analytical solution of the Bloch equations not only for 
periodic coefficients but also for arbitrary coefficients and 
eliminates continued fractions. 

Thus, let us consider the two–level system interacting 
with the field which can be written down in the form 

 
ε(t) = E(t) cos(ωt + Φ(t)) , (1) 
 
where E(t) and Φ(t) are the field amplitude and phase 
being arbitrary functions of time and ω is the field cyclic 
frequency being equal to that of the transition between the 
levels of the system. In this case the equations describing 
the temporal behavior of the elements of the density matrix 
of this system in the dipole–interaction approximation in 
rotating coordinate system have the form17  
 

σ
⋅

21
(t) = – Γ

2 
σ
21
(t) – 

i d ε(t)
h  eiωt n(t) , 

  (2) 

n
⋅

(t) = – (n – n
0
) Γ

1 
– 

2 i d ε(t)
h  (σ

21
(t) e–iωt – σ

12
(t) eiωt) , 

 
where σ

21
 and σ

12
 are the slowly varying amplitudes of the 

off–diagonal elements of the density matrix, n(t) is the 

level population difference, n
0
 = n

(t=0)
, and Γ

2

–1
 and Γ

–1
 are 

the relaxation times for polarization and population, 
respectively. By substituting relation (1) into Eq. (2), 
dropping the terms exp(±2 ω t), and transforming to the 
conventional Bloch variables u and v after introduction of a 
new variable γ = (u – i ν)/2 for which σ* = σ, we obtain 
the Bloch equations for the exciting field given by 
relation (1) in the vector–matrix form 
 
dX
dt  = A(t) X(t) + L , 

 

where 

X = 
u
v
n

, A(t) = 

– Γ
2

0 – a(t)

0 – Γ
2 

 b(t)

 a(t)  – b(t) – Γ
1 

 , L = n
0 
Γ

1 

0
0
1

 , (3) 

 

a(t) = Ω
R
(t) sinϕ(t), b(t) = Ω

R
(t) cosϕ(t), Ω

R
(t) = dE(t)/ �. 

 

Given that the commutator [A(t), eB(t)] is zero, the 

formal solution of Eq. (3) can be written down in the form
18
 

 



A.V. Alekseev et al. Vol. 6,  No. 7 /July  1993/ Atmos. Oceanic Opt.  489 
 

 

X(t) = eB(t)

⎩
⎨
⎧

 

 

 ⌡⌠
0

t

 e–B(t′)
 Ldt′ + 

0
0
n

0 ⎭
⎬
⎫

 

 

 . (4) 

 

where B(t) = ⌡⌠ A(t)dt. To calculate exp[B(t)], let us make 

use of the Sylvester formula3  
 

eB = e
λ
1

 

(B – λ
2
I) (B – λ

3
I)

(λ
1
 – λ

2
) (λ

1
 – λ

3
)
 + e

λ
2

 

(B – λ
1
I) (B – λ

3
I)

(λ
2
 – λ

1
) (λ

2
 – λ

3
)
 + 

 

+ e
λ

3
 

(B – λ
1
I) (B – λ

2
I)

(λ
3
 – λ

1
) (λ

3
 – λ

2
)
 , (5) 

where λ
1,2,3

 are the eigenvalues of the matrix B(t) and I is 

the unit matrix. Without any restrictions on the field 
amplitude under assumption that Γ

2
 = Γ

1
 = Γ we derive 

relations for λ
1,2,3

 in explicit forms: 
 

λ
1
 = –Γt ,  λ  = –Γt ± i f(t) , (6) 

where f 2(t) = I
a
 
2(t) + I

b
 
2(t) , I

a
(t) = ⌡⌠

0

t

 a(t′)dt′ , and 

I
b
(t) = ⌡⌠

0

t

 b(t′)dt′ . 

After substitution of Eqs. (6) into Eq. (5), we derive 
 

eäB(t)
 = 

eäΓt

f 2(t)
 × 

× 

I
b
 
2
 + I

a
 
2cosf(t) I

a
 I
b
 (1 – cosf(t)) ±I

a
 f(t) sinf(t)

I
b
 I
a
 (1 – cosf(t)) I

a
 
2
 + I

b
 
2cosf(t) ±I

b
 f(t) sinf(t)

±I
a
 f(t) sinf(t) ±I

b
 f(t) sinf(t) f 2(t) cosf(t)

.(7) 

 

By substituting Eqs. (7) into Eq. (4), we obtain the 
solution of the Bloch equations for the field with arbitrary 
amplitude and phase modulation in the form 

 

X(t) = n
0
 Γ 

e–Γt

b2(t)
 

I
1
(I

b
 + I

a
 
2cosf(t)) – I

2
 I
a
 I
b
 (1 – cosf(t)) – (I

3
 + Γ–1) I

a
 f(t) sinf(t)

I
1
 I
a
 I
b
 (1 – cosf(t)) – I

2
 (I

a
 
2
 + I

b
 
2cosf(t)) + (I

3
 + Γ–1) I

b
 f(t) sinf(t)

(I
1
 I
a
 + I

2
 I
b
) f(t) sinf(t) + (I

3
 + Γ–1) f 2(t) cosf(t)

 , (8) 

 

where I
1
(t) = ⌡⌠

0

t

 eΓt′ I
a
(t′)

sinf(t′)
f(t′)

dt′ ,  

I
2
(t) = ⌡⌠

0

t

 eΓt′ I
b
(t′)

sinf(t′)
f(t′)

dt′ , I
3
(t) = ⌡⌠

0

t

 eΓt′cosf(t′) dt′ . (9) 

 

Now we can specify the condition under which Eq. (4) is 
correct. With the use of Eqs. (7) we derive 
 

[A(t), eB(t)] = e–Γt 
(a I

b
 – b I

a
)

f 2(t)
 × 

 

× 

0 f(t) sinf(t) I
b
 (1 – cosf(t))

– f(t) sinf(t) 0 I
a
 (1 – cosf(t))

I
a
 (1 – cosf(t))  I

a
 (1 – cosf(t)) 0

 . (10) 

 

It then follows that the solutions of Eq. (3) given by 
formula (8) are correct only if one of the following 
conditions is fulfilled: (1) t → ∞ and (2) a I

b
 = b I

a
. 

The first condition means that the solutions given by 
formula (8) are correct for arbitrary functions E(t) and ϕ(t) 
only in the steady state, after any relaxation process is damped 
out. Physically this means that formula (8) is correct for such 
values of t for which the inequately Γt . 1 is true. 

The second conditions means that formula (8) is correct 
for any t′ from the interval [0, t], but not for arbitrary E(t) 
and ϕ(t). Using explicit forms of the functions a(t), b(t), 
I
a
(t), and I

b
(t), we can show that the second condition is 

fulfilled in two cases. First, when the field amplitude and 
phase are nonmodulated, i.e., when E(t) = const and 
ϕ(t) = const. Second, when E(t) is arbitrary function while 
ϕ(t) = const. In the particular case of ϕ = 0, we derive 

 

a(t) = I
a
(t) = 0, b(t) = Ω

R
(t), I

b
(t) = ⌡⌠

0

t

 Ω
R
(t′)dt′, f(t) = I

b
(t), 

 

I
1
(t) = 0, I

2
(t) = ⌡⌠

0

t

 eΓt′ sinI
b
(t′)dt′, I

3
(t) = ⌡⌠

0

t

 eΓt′ cosI
b
(t′)dt′ . 

 

Thus, the solutions of the Bloch equations for 
arbitrary amplitude modulation of the exciting field have 

the form
19
  

X(t) = n
0
 Γe

–
Γt

 

0

–I
2
(t) cosI

b
(t) + (I

3
(t) + Γ

–1
) sinI

b
(t)

I
2
(t) sinI

b
(t) + (I

3
(t) + Γ

–1
) cosI

b
(t)

. (11) 

 

From Eq. (11), assuming E(t) = const, we can easily 
derive the well–known Torrey solutions2 for monochromatic 
excitation. Solution (11) can be easily written out in an 
explicit form for periodically modulated E(t). 

Thus, solutions (8) and (11) obtained for the two–
level system excited by the resonant field with arbitrary 
amplitude and phase modulation or with amplitude 
modulation alone are generalization of the existing solutions 
for the particular types of modulation of the field 
parameters (taking into account the above–mentioned 
assumptions). 

In conclusion it should be noted that the problem of 
investigating the resonance interaction between the two–
level system and the field with modulated parameters (in 
particular, stochastic field) was first formulated by 
Khermanovich and Kopvillem in the late 70 s. 
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