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Algebraic formalism is proposed to describe the neutrino oscillations in 
heterogeneous media when traditional approaches based on perturbation theory are 
inefficient. Exact solutions of corresponding equations are obtained for models of 
variations in the density of a medium occurring at the Sun and the Earth.  

 
1. INTRODUCTION 

 
In the mid–1960s academician U.Kh. Kopvillem 

proposed the new view on physics of coherent processes of 
radiation interaction with matter (such as induction, 
avalanche, and echo). The progress that has been made 
towards the classification of elementary particles 
(hadrons) according to the SU(3) symmetry by that time 
led him to an idea to classify various effects of echo using the 
intimate properties of the symmetry underlying their nature 
and ciphered in the Hamiltonian of the process, namely, in the 
dynamic Lie algebra that is engendered by it. This assumption 
implies conceptually a theoretical description and an 
experimental search for echo effects in different physical 
groups of the Lie algebra.1,2 This idea acquiered its own 
mathematical form and physical content in Refs. 3–6. 

Algebraic basis plays a major role in modern physics. 
It is applied to the study of various objects in nature. By 
the algebraic basis is meant a principle of studying rather 
than a method for obtaining the specific results. The 
methods are considerably different depending on the goals 
to be sought; however, they are always based on 
application of some or other properties of algebraic 
structure. In this paper we apply the Lie algebra 
method7,8 to the study of nonstationary neutrino 
oscillations in heterogeneous media.  

The available experimental and theoretical data on 
the existence of neutrino mass (quark–lepton symmetry, 
unified superstring theory, etc.) verify the hypothesis of 
neutrino mixing.9 In the framework of this hypothesis the 
neutrino states with specific flavors are superpositions of 
the states with specific masses. This is in many ways 
similar to the effects of mixing of K° and K mesons and 
of quarks and is caused by a certain new interaction 
leading to the oscillations of the neutrino flavor (i.e., to 
the transitions of the type νe – νy, νe – ν

τ
, etc.) and 

hence to the explicit nonconservation of a lepton charge. 
Such fundamental consequences of the hypothesis of 
neutrino mixing as nonzero mass and nonconservation of 
the lepton charge gain interest in search for ν – ν 
oscillations in the beams of reactor and solar neutrinos.  

Here we study ν – ν oscillations in the formalism of 
dynamic symmetry which considers in a natural manner 
the effect of the medium whose density varies along the 
path of neutrino beam propagation, effects of absorption 
in it, and the existence of the arbitrary number of 
different types of neutrinos as well as possibile transitions 
in the magnetic field with simultaneous change of the 
flavor and helicity. If we restrict ourselves to the case of 
oscillations in the system of two types of neutrinos, i.e., 

νe – ν
μ
, ν – ν–, νeL – ν

μR, and νL – ν–R, then SU(2) will  

be the group of dynamic symmetry of such a process. 
When N types of neutrinos are available, SU(N) is the 
total group of symmetry; however, in the majority of 
important cases the symmetry can be reduced to SU(2), 
SO(3), SO(3, 1), SO(4), and other groups with the 
comparatively small number of parameters.  

The algebraic method developed in the present paper 
for studying the nonstationary quantum processes10 
enables the exact solutions of dynamical problems to be 
found when other methods are inefficient. In particular, 
the above–mentioned is possible in such cases in which it 
is difficult to use perturbation theory as well as in the 
case of fast and irregular variations in the field 
parameters (the amplitude, frequency, and phase) in 
physics of magnetic and optical resonances and variations 
in the density of a medium engendering neutrino 
oscillations. In this paper the given approach is used not 
only as the new formalism for describing the neutrino 
oscillations but also as a method for obtaining the new 
solutions of this problem for realistic models of variations 
in the density of heterogeneous media.  

It is easy to show in an explicit form how from the 
hypothesis of mixing it follows that the neutrino 
oscillations can appear in vacuum. Let us expand an 
arbitrary neutrino state in terms of the eigenstates of 
weak interactions with specific momenta p

ν
   

 

⏐ν> = ∑
ξ

  Ψξ ⏐νξ> , (1) 

 

here the subscript ξ denotes flavor, ξ = e, μ, τ, ... .  
From the vectors ⏐ν

ξ
> let us form such linear 

combinations, denoted by the Latin subscripts, which satisfy 
the following equation for the eigenvalues:  
 

H⏐νj> ≡ (H0 + Hmix) ⏐νj> = Ej⏐νj> ,  j = 1, 2, 3, ... . (2) 

 
We add the term Hmix, being responsible for mixing of 

neutrinos of different types, to the standard Hamiltonian H0 

which is diagonal on the flavor basis  
 
<ν

ξ
⏐H0⏐νξ> = P

ν
 ,  <ν

ξ
⏐H0⏐νξ> = 0 , (3) 

 
The vectors with the Latin subscripts characterize the 

states with specific masses. The transition from the flavor 
basis to the energy basis is prescribed by a certain unitary 
transform  
 

⏐ν
ξ
> = ∑

j

 S
ξ
 j⏐νj> ,  Sξ

 j ≡ <νj⏐νξ> .  (4) 
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The probability of oscillation transition of the ξ–type 
neutrino at t = 0 to the η–type neutrino by the instant t 

can be calculated by the solution of the temporal Schro
..

dinger wave equation with stationary Hamiltonian 
H0 + Hmix  

 
P(ν

η
; t⏐ν

ξ
; 0) = ⏐<ν

η
⏐ exp [–i t (H0 + Hmix)]⏐νξ>⏐

2 = 

 

= ⏐∑
j

 S
ξ
 j [exp(–i t Ej)]Sjη

+

⏐ = ∑
j

 ⏐<νj⏐νξ>⏐
2
⏐<ν

η
⏐νj>⏐

2
+ 

 

+ 2Re ∑
j≠κ

 <ν
η
⏐νj><νη⏐νκ>

*<νj⏐νξ><νκ⏐νξ>
* × 

 
× exp [i (E

κ
 – Ej) t] . (5) 

 
The second term in the last relation is responsible for 

the neutrino oscillations sought in vacuum. They are 
possible if at least for one pair of levels j, κ in the exponent 
E

κ
 ≠ Ej and if at least for one of the pairs j, κ and ξ, η the 

amplitude coefficient of the exponent is nonzero. Thus in 
order for the neutrino oscillations can appear in vacuum it 
is necessary to fulfil the following two conditions:  

(1) if at least one type of the neutrino possesses 
nonzero mass, i.e.,  
 
<ν

ξ
⏐Hmix⏐νξ> > 0 , (6) 

 
2) if at least one pair of neutrinos of different types is 

mixed, i.e.,  
 
<ν

ξ
⏐Hmix⏐νη> ≠ 0 ,  ξ ≠ η . (7) 

 
2. COMMON PROPERTIES OF OSCILLATIONS OF 
TWO TYPES OF NEUTRINOS IN THE MEDIUM 

 
In matter the neutrinos undergo the elastic forward 

scattering by electrons and nuclei due to weak interaction; 
in addition, the scattering amplitude is different for 
different types of neutrinos. Thus the electron neutrino 
possesses the excess amplitude of elastic scattering by 
electrons of the medium due to charged currents (compared 
to the amplitude of scattering by all the targets caused by 
neutral currents which is the same for all types of 
neutrinos). The account of neutrino interaction with 
particulate matter results in the appearance of the new term 
Hint in the Hamiltonian. This term is no longer stationary 

when neutrinos move through the heterogeneous medium. 

Since we manipulate the units in which � = c = 1 in this 

case r g t and consequently, the total Hamiltonian becomes 
the explicit function of the time  
 

H(t) ≡ H0 + Hmix + Hint , (8) 

 
in addition, its dependence on time is unambiguously 
determined by variation in the density of the medium along 
the propagation path of the neutrino beam. The temporal 

Schro
..
dinger wave equation with Hamiltonian (8) cannot be 

solved exactly (in terms of the known special functions) for 
arbitrary variation in the density ρ(r) of the medium even 
in the simplest case of two types of neutrinos. In this paper 
we obtain the classes of exact solutions of this problem for 
different laws modeling the variation in ρ(r) in the natural 
media by the method of dynamic symmetry.  

It was first noted in Ref. 11 that the behavior of 
neutrino oscillations in the homogeneous medium is 
different compared to vacuum due to the interaction of the 
neutrino with charged currents. In so doing the oscillation 
length and angle of mixing in the medium are functions of 
its density. Then it was shown in Refs. 12 and 13 that in 
the medium of variable density the effect of neutrino 
oscillations can be intensified in the process of propagation 
of the neutrino beam through the resonance layers. Thus the 
heterogeneous medium initiates oscillations and in so doing 
plays the role of the external resonance electromagnetic 
field in physics of magnetic and optical resonances. 
According to the available data, the mass mνe

 is far beyond 

the limits of sensitivity of laboratory experiments and 
therefore the observed resonance oscillations of neutrinos in 
the heterogeneous media provide the unique possibility for 
measuring mνe

.  

The temporal Schro
..
dinger wave equation for two types 

of neutrinos, in which the effect of matter was taken into 
account, was considered in Refs. 11–13 for different modes 
of oscillations. On the basis of flavors it has the form  
 

d
dt⎝
⎛

⎠
⎞Ψe

Ψ
μ

 = – i 

⎝
⎜
⎛

⎠
⎟
⎞he(t)  h

–
 

 h
–

  h
μ
(t)

 
⎝
⎛

⎠
⎞Ψe

Ψ
μ

 . (9) 

 
If we omit the terms caused by neutral currents which 

make the identical contributions to the wave functions, then 

the matrix elements of the Hamiltonian will be equal to
12
  

 

h ≡ he(t) – h
μ
(t) = 

2π
l
ν

 
⎝
⎛

⎠
⎞cos2Θ – 

l
ν

l0
 , 

 

h
–

 = 
π
l
ν

 sin2Θ , (10) 

 

where Θ is the angle of mixing in vacuum, ⏐l
ν
⏐ ≡ 4πρ/Δ m2 

is the length of oscillations in vacuum, and Δ m2 ≡ m2
1 – m2

2. 

The characteristic length for the medium has the form  
 

l
0

 
–1

 ≡ 
r

2π mN p
 ∑
κ

 ( feκ – f
μκ

) n
κ
 , (11) 

 
where f

ξ
 
κ
 is the amplitude of forward scattering of the ν

ξ
 –

type neutrinos by the kth constituent of matter at the zero 
angle; ξ = e, μ; κ = e, p, n; and, n

κ
 is the particle number 

of the kth constituent per a nucleon of mass mN. 

Traditionally, the equation is solved in the oscillation 
transition probability from νe at t = 0 to νe at the point 

r g t. The solution of this equation is derived from Eq. (9) 
and has the form  
 

p
⋅⋅⋅

 – 
h
⋅

h p
⋅⋅

 + (h2 + 4h
–2) p

⋅

 – 2 
h
⋅

h h
–

2 (2 p – 1) = 0 , (12) 

 

where p(0) = 1, p
⋅

(0) = 0, p
⋅⋅

(0) = – 2 h
–2, i.e., νe is created 

in the source.  

For the medium with constant density (h
⋅

 = 0) the 

solution of Eq. (12) has the simple form
11
  

 
p = 1 – A sin2(π r/lm) , (13) 
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where A determines the oscillation depth  
 

A ≡ sin22Θm = (h
–

 lm/π)2 , (14) 
 

and lm is the oscillation length in the medium  
 

lm
2  ≡ 4π2/(h2 + 4h

–2) . (15) 
 

The angle of mixing Θm in the medium is given by 

formula (14) and using Eqs. (10) and (15) it can be 
represented in the form  
 

sin
2
2Θm = sin

2
2Θ [(cosΘ – l

ν
/l0)

2
 + sin

2
2Θ]

–1
 . (16) 

 

It follows from this that the dependence of the parameter of 
mixing in the medium in the form of Eq. (16) on the density 
of matter exhibits resonance at small sin22Θ: l

ν
/l0 ∼ ρp. 

Equation (16) reaches the maximum of Θm = 45° at  
 

l
ν
/l0 = cos2Θ ,  (17) 

 

i.e., the process of mixing in matter exhibits maximum. 
From Eqs. (17), (11), and (16) it is easy to calculate the 

resonance density of matter
12  

 

ρR = mN (Δ m)2 (cos2Θ) (2 2 GF p)–1 (18) 
 

and the half–width of the resonance  
 

Δ ρR = ρR tan2Θ , (19) 
 

here GF is the Fermi constant. Thus the medium can 

intensify mixing and increase the probability of transition 
from one type of neutrinos to another one.  

An alternative opportunity for describing the neutrino 
oscillations in the heterogeneous media is associated with 

the use of the Schro
..
dinger wave equation on the basis of 

eigenstates of neutrinos in the medium ⏐νim >, i = 1, 2, 

which is related to the flavor basis by the transform  
 

S = 
⎝
⎛

⎠
⎞ cosΘm  sinΘm 

– sinΘm  cosΘm 
 , (20) 

 

which makes Hamiltonian (9) diagonal  
 

S–1H S = Hdiag . (21) 
 

The Schro
..
dinger wave equation acquires the form

13
  

 

d
dt ⎝
⎛

⎠
⎞Ψ1m

Ψ2m
 = – i

⎝
⎜
⎛

⎠
⎟
⎞ h1  – i Θ

⋅

m

 i Θ
⋅

m  h2

 
⎝
⎛

⎠
⎞Ψ1m

Ψ2m
 , (22) 

 

in which the diagonal elements can be found using 
Eqs. (10) and (11)  
 

h
1,2

 = 
1
2 [he + h

μ
 ± (h

2
 + 4h

–2
)
1/2

] . (23) 

 

In the heterogeneous medium the angle Θm is unsteady, 

which leads to the change of flavor of the eigenstates 

⏐νim >. The relation for Θm as a function of ρ has the form
13

  

 

d
dt Θm = 

1
2ρR

 
tan2Θ

(1 – ρ/ρR)2 + tan22Θ
 
dρ
dt .  (24) 

Thus the likely solutions of Eqs. (9) or (22) depend 
strongly on the type of the function of variation in the 
density of the medium versus distance. The adiabatic 
density variation was considered in Ref. 13 in detail. It can 
be determined by the condition  
 

⏐Θ
⋅

m⏐ n ⏐h1,2⏐ = 2π/lm , (25) 
 

under which the nondiagonal elements of matrix (22) can be 
neglected. The purpose of this paper is the derivation of the 
exact solutions of equations (9) and (22) (including those 
for more than two types of neutrinos) for models of 
variation in the density of the medium occurring at the Sun 
and Earth. The exact results provide the conditions of 
complete transformation of neutrinos from one type to 
another to be determined. The field of applicability of such 
solutions is not limited by the criteria for adiabatic behavior 
or, vice versa, discontinuities in the density.  

 
3. ALGEBRAIC FORMALISM 

 
In this section we consider the algebraic formalism of 

dynamic symmetry
10
 as applied to the theory of neutrino 

oscillations in the medium. The Schro
..
dinger wave equation 

for N types of neutrinos can be written in the general form  
 

i 
d
dt Ψ(t) = H(t) Ψ(t) , (26) 

 

where Ψ(t) is the N–dimensional vector of probability 
amplitudes of transitions, which is represented on the flavor 
or eigenstate basis in the medium. The algebraic method of 
solution of Eq. (26) is based on the Hamiltonian expansion  
 

H(t) = ∑
j=1

n

 hj(t) H
∧

j , (27) 

 

on the basis {Hj, j = 1, ..., n} of a certain representation of 

the dynamic n–dimensional Lie algebra Ln with the 

coefficients hj(t) and on the corresponding parametrization 

of the evolution operator  
 

U(t, 0) = Ψ(t) [Ψ(0)]
–1

 , (28) 
 

which obeys the equation  
 

d
dt U = H(t) U ,  U(0, 0) = I . (29) 

 

Various methods of parametrization are possible  
  

U = F {exp [gj(t) H
∧

j]} , (30) 
 

where F{...} denotes the additive multiplicative or combined 
form of the generator exponents Ln (see Ref. 10). The 

evolution operator can be found in the explicit form by 
solving the system of n nonlinear differential equations of 
the first order for the group parameters g  
 

hj(t) = Mij(gi, gj) 
d
dt gj ,  i, j = 1, ..., n . (31) 

 

The form of system (31) depends on the structure of 
expansion coefficients hj(t) of dynamic algebra Ln, and 

parametrization method (30). The algorithms for the 
solution of linear evolution equation (29) for the basic types 
of dynamic symmetry were developed in Refs. 10 and 14–16.  
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The group SU(2) carries the entire information 
about the dynamics of oscillations of two types of 
neutrinos in the heterogeneous media and of N types of 
neutrinos under the certain conditions. In this case the 
Hamiltonian is expanded on the basis, generally speaking, 
of N–dimensional representation SU(2)  
 

H(t) = h0(t) R0 + h–(t) R– + h+(t) R+ (32) 
 

with generators satisfying the commutation relations  
 

[R+, R–] = 2 R0 ,  [R0, R±
] = 2 R

±
 . (33) 

 

In so doing for the multiplicative parametrization of SU(2)  
 

U = exp g0 R0 exp g– R– exp g+ R+ (34) 
 

the system of equations (31) is reduced to the unique 
equation in g = exp(g0/2) (see Ref. 14)  

g
⋅⋅

 – 
h
⋅

+
h+

 g
⋅

 + 
1
2 [
 
 – h

⋅

0+ h0 

h+

⋅

h+
 – 

1
2 (4h– h+ ]+

 
 h0

2
g = 0 . (35) 

 

The group parameters of SU(2) are related to each 

other by the relations
16
  

g– = 
g
⋅

0 – h0

2 h+
 exp g0 ,  g+ = ⌡⌠

0

t

 h+ exp (– g0) dt′ , (36) 

 

and fit the initial conditions  
 

g0(0) = g
±
(0) = 0 ,  g

⋅

0(0) = h0(0) ,  g
⋅

±
(0) = h

±
(0) .  

 

Basic equation (35) can be simplified by changing to 
the rotating coordinate system according to the relation  
 

U(t, 0) = exp ⎣
⎡
 

 
– iR0 ⌡⌠

0

t

 ⎦
⎤h0(t′)

 

 
dt′ U

~
(t, 0) . (37) 

 

In what follows the operator U~  fits Eq. (29) with the 
Hamiltonian  

H
~

(t, 0) = h– R– exp ⎣
⎡
 

 
– i ⌡⌠

0

t

 ⎦
⎤h0(t′)

 

 
dt′  + 

 

+ h+ R+ exp ⎣
⎡
 

 
i ⌡⌠

0

t

 ⎦
⎤h0(t′)

 

 
dt′  , (38) 

 

and for the quantity x = exp (g~0/2) parametrized 

analogously to Eq. (34) we obtain the equation  

x
⋅⋅

 – 
⎝
⎜
⎛

⎠
⎟
⎞h

⋅

h+
 + i h0  x

⋅

 – h– h+ x = 0 (39) 

 

with the corresponding initial conditions. 
In order to find the wider possible classes of exact 

solutions to the evolution problem, we introduce the new 
variable z(t) and bring Eqs. (35) and (39) into the form 
being convenient for comparison with the ordinary linear 

differential equations of the second order.
14,16

 For 
example, we transform Eq. (35) to the form  
 

g′′ + 
g′

z
⋅

 
d
dt ln⎝

⎜
⎛

⎠
⎟
⎞

– 
z
⋅

2 h+
 – 

– 
g

2(z⋅2)
 
⎣
⎡

⎦
⎤h+ 

d
d t 

h0

h+
 + 

1
2 (4 h– h+ + h0

2)  = 0 , (40) 

 

where differentiation with respect to z is denoted by the 
prime. By comparing Eq. (40) or (39) with the equations of 
mathematical physics (with the Bessel, Legendre, Weber, 
Whittaker, hypergeometric, and other equations) we 
determine the classes of exact solutions for the evolution 
parameters g0,±(t) and classes of functions h0(t) and/or 

h
±
(t) for which these solutions are valid.  

The above–proposed formalism for description of 
neutrino oscillations is attractive for a variety of reasons. 
In its framework the quantum system evolution is 
described in so much general manner that can be allowed 
by the laws of quantum mechanics. The solution of the 
evolution problem is independent of dimensionality of 
representation of the dynamic Lie group and of the form 
of its generators. There are no limitations associated with 
the severe periodicity or adiabatic character of variation 
in the coefficients h(t). The criteria of the validity of 
perturbation theory are also not used.  
 

4. SU(2) NEUTRINO EVOLUTION IN THE 
HETEROGENEOUS MEDIA 

 
Even if we restrict ourselves to two types of neutrinos, 

say, of electron and muon types, then the second–order 
equation for the probability amplitude follows from the 

system of Schro
..
dinger equations (9)  

  

i Ψ
⋅⋅

e – (he + h
μ
) Ψ
⋅

e – [h
⋅

e – i he
2 – i h

–2 + i (he + hl) he] Ψe = 0, 
 

whose form is much more complicated than that of Eq. (40) 
for the evolution parameter in the algebraic formalism.  

For N = 2 we deal with the two–dimensional 
representation of SU(2) with generators on the spherical 
basis  
 

R0 = 
1
2 ( )0    1

0 – 1  ,  R+ = ( )0 1
0 0  ,  R+ = ( )0 1

0 0   (41) 

 

and with Hamiltonian matrix (9)  
  

H = – i (he – h
μ
) R0 – i h

–
 R– – i h

–
 R+ – i (he + h

μ
) I2. (42) 

 

The contribution of the unit matrix I2, commutating with all 

the basis matrices, to the evolution operator is the exponential 
factor exp [i (he + hy) t]. As a result, we obtain the 

Hamiltonian in the form of Eq. (32) with the coefficients  
 

h0(t) ≡ – i h(t) ,  h+ = h– ≡ – i h
–

 = const . (43) 
 

By using transform (37) we derive the simple equation for 
the evolution parameter  
 

x
⋅⋅

 – h(t) x
⋅

 + h
–2 x = 0 , (44) 

 

whose solution describes the dynamics of oscillations of two 
types of neutrinos according to Eqs. (34), (36), and (37). It 
follows from Eqs. (10) and (11) that the coefficient h is 
proportional to the density ρ(r) of the medium. The form of 
Eq. (44) is convenient for the search for such laws of variation 
in the density of the medium along the propagation path of a 
neutrino beam at which the problem admits the exact 
solutions in terms of elementary or special functions.  
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(1) The linear law of variation in the density of the 
medium (t = r and c = 1)  
 
h(t) = a t + b ,  (45) 
 
where a and b are the arbitrary parameters. In this case 
Eq. (44) with variable coefficient (45), by the simple 
substitution a t + b = t, is reduced to the equation  
 

d2x

dτ2
 – 

τ
a 

dx
dτ + ⎝

⎛
⎠
⎞h

–

a  
2

x = 0 (46) 

 
with the solution in terms of the Whittaker function 
[Ref. 17, Eqs. (2.273.10)].  

(2) The exponential law of variation in the density of 
the medium  
 
h(t) = a exp b t + c , (47) 
 
where a, b, and c are the arbitrary parameters. The 
substitution of 
 

x = y exp 

⎣
⎢
⎡

⎦
⎥
⎤1

2 ⌡⌠
t0

t

 (a ebt′ + c) dt′   

 
into Eq. (44) with function (47) brings into the equation  
 

y
⋅⋅

 = [ ]a2

4  e2bt – 
a
2 (b – c) ebt + 

c2

4  – h
–2 y ,  (48) 

 
which transforms into the modified Whittaker equation 
[Ref. 17, Eqs. (2.273.14)]  
 

d2y

dt2
 = 
⎣
⎢
⎡

⎦
⎥
⎤( )a

2b

2

e2τ + 
a(c – b)

2b2  eτ + ( )c2b
2

 – ⎝
⎛
⎠
⎞h

–

b

2

y  (49) 

 
owing to the calibration transform b t = τ.  

To expand the class of functions h(t) admitting the 
exact solutions of Eq. (44), we introduce the general 
transform of the independent variable  
 

z = ⌡⌠ f(t) dt  (50) 

 
with the arbitrary differentiable and integrable function of 
the time f(t). In so doing Eq. (44) is transformed into the 
form  
 

f 2x′′ + ( )f
⋅

 – h f  x′ + h
–2

 x = 0 , (51) 

 
where differentiation with respect to z is denoted by primes. 
By selecting the specific form of substitutions (50), we can 
now find such laws of variation in the density of the medium 
h(t) for which Eq. (51) is transformed into the ordinary 
second–order equations with the known exact solutions. Let 
us restrict ourselves to the functions h(t) ∼ ρ(t) modeling the 
variations in the density at the Sun and Earth.  

(3) The variation in the density of the medium 
according to the law  
 
h(t) = a tanh(t – c) ,  (52) 
 

where a and c are the arbitrary parameters. As initial 
equation, we use  
 

(z2 + 1) x′′ + (1 – a) z x′ + h
–2 x = 0 , (53) 

 
which is equivalent to Eq. (51) under the following 
conditions:  
 

f = z2 + 1 ,  (54) 
 

f
⋅

 – h f = (1 – a) z . (55) 
 
The relation between the variables z and t can be found 
from Eqs. (54) and (55)  
 
z = sinh(t – c) , (56) 
 
here c plays the role of the integration constant of Eq. (50). 
It is easy to ensure that law (52) can actually be derived 
from condition (55) using Eq. (56). Equation (53), in its 
turn, using the substitution z2 + 1 = y, is reduced to the 
hypergeometric Gauss equation  
 

y (y – 1) 
d2x

dy2 + [(α + β + 1) y – γ] 
dx
dy + α β x = 0 (57) 

 
under the following identifications:  
 

2γ = 1 – a ,  2(α + β) = – a ,  4 α β = h
–2 . (58) 

 
Thus the solution of initial equation (44) for variation 

in the density of the medium versus distance (time) 
according to law (52) can be expressed in terms of the 
hypergeometric function.  

Note that the spectrum of non–trivial potentials, for 
which the exact solutions for the probability amplitudes of 
transitions in the particular case of the neutrinos of two 
flavors under the condition he = – h

μ
 (see Ref. 13) are well 

known, is exhausted by three above–considered functions 
h(t). First, the above–developed formalism for description 
of neutrino oscillations is not limited by the case N = 2 
(the obtained solutions can be easily generalized for the case 
of the SU(2) dynamics with the arbitrary number of types 
of neutrinos) and condition he = – h

μ
. Second, such a 

formalism enables the exact solutions for other virtually 
important laws of variation in the density to be found. Let 
us show tha 

(4) Variation in the density of a medium according to 

the law 
 
h(t) = a coth(t – c) . (59) 
 
The following initial equation  
 

(z2 – 1) x′′ + (1 – a) z x′ + h
–2 x = 0 , (60) 

 

f = z2 – 1 ,  z = cosh(t – c) ,  1 – z2 = y (61) 
 
leads to hypergeometric equation (57) with the parameters 
given by Eq. (58).  

(5) Variation in the density of a medium according to 

the law 
 
h(t) = a sech(t – c) . (62) 
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The initial equation  
 

(z2 + 1) x′′ + (z – a) x′ + h
–2 x = 0 ,  

 (63) 

f = z2 + 1 ,  z = sinh(t – c)  
 
and the substitution 2y = 1 – i z yields the hypergeometric 
equation [see Ref. 17, Eq. (2.249)]  
 

y (y – 1) x′′ + [ ]y – 
1
2 (1 – i a) x′ + h

–2 x = 0 , (64) 

 
which acquires standard form (57) under conditions  
 

i α = h
–

 ,  α = – β ,  2γ = 1 – i a .  (65) 
 
The above–considered laws of variation in the density of 
the medium for which the SU(2)–evolution parameters 
can be exactly obtained can serve as the good models of 
variation in the electron density at the Sun: functions 
(47) and (59) for the external layers and (52) for the 
internal ones. The variation in the density of the Earth is 
modeled by combination of laws (45) and (52): the first 
of them models the linear sections of the function ρ(r) at 
the Earth and the second – its discontinuities.  

By combining different versions of initial equation 
and substitution (50), we can obtain the variety of laws 
of variation in the density of the medium versus distance 
for which sought–for equation (44) could be exactly 
solved for the SU(2)–evolution parameter. Thus by 
calculating the parameter g0 = 2 lnx and then g+ and g– 

according to formulas (36) we can explicitly represent the 
evolution operator in the factorization form given by 
Eq. (34). All the quantities required for the description 
of neutrino oscillations in the heterogeneous media are 
obtained further by the standard scheme of quantum 
mechanics. For example, the probability of muon–
neutrino transition at t = 0 to the electron neutrino at 
the arbitrary instant can be calculated by the formula  
 
p(νe; t⏐νμ ; 0) = ⏐<νe⏐ exp [g0(t, 0) R0] × 
 

× exp [g–(t) R–] exp [g+(t) R+]⏐ν
μ
 >⏐2 . (66) 

 

5. CONCLUSION 
 

The results obtained in Sec. 4 can be generalized for 
the case of N×N representation of the group SU(2), i.e., 
for such cases of mixing and of oscillations of N types of 
neutrinos in the heterogeneous media which possess this 
dynamic symmetry. The amplitudes of neutrino transitions 
being the matrix elements of N = (2s + 1)–dimensional 
irreducible representation SU(2) are expressed in terms of 

the Jacobi polynomials P
s

mn
(cos δ) for parametrization by 

the Euler angles ϕ, δ, and σ which are related to the 
parameters g as follows:  

exp (g0/2) = cos (δ/2) exp [i (ϕ + δ)/2] ,  

 
g– = (i/2) sin δ ⋅ exp i σ ,  

 
g+ = i tan (δ/2) ⋅ exp (– i σ) ,  

 
cos δ = 2 g– g+ + 1 .  (67) 

 
The other possibile generalization of the results of 

Sec. 4 are connected with the expansion of the dynamic 
symmetry group. For example, for N = 3 with the complete 
group of symmetry SU(3) I recommend using the regular 
procedure for finding the corrections for the evolution 
operator SU(2) in powers of the small coefficient of 
interaction.18 At N = 4 under certain limitations imposed on 
the coefficients h of the Hamiltonian matrix, SO(4) and 
SO(3, 1) are the groups of symmetry. As was shown in 
Ref. 16, the exact calculation of the evolution operators of 
these groups is reduced to the solution of two independent 
SU(2) evolution equations (29).  
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