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Some salient features are studied of optical transient processes such as photon 
echoes and their use in dynamic holography of degenerate and multilevel quantum 
systems. Applications are discussed of echo–holography to echo–spectroscopy, system of 
real–time data processing, and transformation of spatio–temporal structure of laser pulses. 

 
By now a new promising line of investigation has 

been formed in holography, namely, dynamic holography 
(see review in Ref. 1 and the references to original studies 
cited therein). The structure of dynamic holograms is a 
function of not only the spatial coordinates of an object 
but also of time, while the process of dynamic holography 
by itself is considered as scattering of a probing beam by 
quasiperiodic inhomogeneities of a medium initiated by 
recording waves (in the case of high beam power these 

inhomogeneities are initiated by probing wave as well).
2
 

Numerous and diverse materials are used as recording 
media in dynamic holography. Resonant media were first 

used as recording media by Gerretsen
3
 and Boersch and 

Eichler.
4
 These experiments and more recent studies

5–9
 

have outlined the scope of resonance dynamic holography. 
Both recording and readout of the dynamic holograms 
were then performed simultaneously. Later Phillion et 
al.10 made an important step forward, namely, 
reconstructed the hologram at a delayed moment 
determined by the lifetime of an excited state. The 
authors of Refs. 11 and 12 (and those of more recent 

studies
13–15

) suggested to make another important step, 
namely, to separate the object and reference beams in 
time. Thus one more measurement was introduced into the 
process of recording the hologram. The new line of 
investigation of holography was named echo–holography. 
It is generally recognized now. 

Resonance dynamic echo–holograms are recorded 
onto the superposition of atomic and molecular states 
using the transient processes of the type of photon echo 
(PE), forecasted by Kopvillem and Nagibarov in 1962–
1963 (see Refs. 16 and 17). It should be noted that there 
are some qualitative differences between the transient 
phenomena in the optical range and those in the radio–
frequency range. They are, first of all, quite short laser 
wavelengths as compared to the dimensions of the sample 
and second, degeneracy of the energy levels in a certain 
quantum number. That is why the PE is sensitive to the 
spatial structure of exciting pulses and allows one to use 
the resonant media to form spectrally selective holograms 
and nonstationary images. 

During recording echo–holograms in resonant media 
dynamic lattices with nonequilibrium population and 
polarization are formed. The former is described by the 
diagonal components of the density matrix while the 
latter – by its off–diagonal components. Both external 
probing signals and echo–signals may be scattered by 
these lattices. In echo–holography this process is 
performed automatically at prescribed instants of time. 
Note also that such holograms may be recorded by the 

technique of the burnt–out dip.
18–19

 

The authors of Refs. 20 and 21 were the first to 
study the salient features of the echo–hologram formation 
onto degenerate energy levels and to demonstrate that the 
polarization characteristics of the electric field of the 
object wave and the type of the resonant transition 
appear to be the controlling factors in forming, 
reconstructing, and transforming the echo–holograms. 
Thus, the effect of inversion of polarization of the echo–

hologram response was first forecasted
20,22

 and then 

experimentally observed in ruby.
23
 The analysis of 

polarization characteristics of the reconstructed echo–
holograms performed in these studies indicated that in the 
general case the polarization of the reconstructed echo–
hologram response depends on the relative orientation of 
the fields of the object and standing waves as well as on 
the direction in which the response is observed. 
Meanwhile the response wavefront appears to be 
dependent on the type of the wavefront of every 
component of the electric field of the object pulse (these 
components differ in sense of their polarization), while 
the contribution of each component depends on the 
geometry of the experiment, so that the response 
wavefront may be specially changed by way of selecting 
the appropriate geometry. Similar results were obtained 
for stimulated echo–hologram as well. 

The recording of echo–holograms onto multilevel 
systems is of particular interest, since frequency 
conversion of the reconstructed signals becomes possible. 
It was demonstrated in Refs. 24–29 that in multilevel 
systems, in which the inhomogeneous broadenings of 
various resonant transitions are correlated, the real–time 
scale of the echo–hologram response may be converted. In 
this case the echo–hologram recording of a fast process 
may be protracted in the hologram response, and vice 
versa, depending on the relation between the carrier 
frequencies of the object pulse and the response. 
Multilevel systems used for recording echo–holograms are 
capable of recording the information about the object at 
different frequencies. Thus it appears possible to develop 

color echo–holography.
30–31

 Individual colors in the 
object pulse may be shifted in time relative to each other, 
and differ in polarization, wavefront, and temporal 
structure. The reference and reproducing pulses may have 
their Fourier–spectra different from the spectrum of the 
object pulse, which opens up additional opportunities for 
the transform (processing ) of color information. 

Thus the echo–holograms can be used in the systems 
of real–time signal processing (signal filtering), 
transformation of the spatiotemporal structure of laser 
pulses, and correction of the signal wavefronts and for 
the development of high–capacity random–access memory 
of optical computers as well as in echo–spectroscopy.  
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Therefore, a solution of these problems is of significant 
practical interest. 

 
1. TECHNIQUES FOR DESCRIPTION OF THE 
INTERACTION OF SHORT LASER PULSES OF 
COMPLEX SPATIOTEMPORAL STRUCTURE  

WITH RESONANCE PARTICLES 
 
During recording the echo–hologram, information 

about the object may be embedded in the spatiotemporal 
structure of the object pulse and in its polarization. Two 
approaches are possible to the mathematical description of 
the interaction of that pulse with resonance particles. 
Neglecting relaxation within the time over which the pulse 
acts for a single–particle wave function ψ we have 

 

i� 
∂
∂t ψ = [H0 + V(r, t)] ψ , (1) 

 

where V(r, t) is the operator of interaction of the resonant 

particle with the exciting pulse and H0 is the unperturbed 

Hamiltonian. Proceeding to a rotating system of coordinates 
by the transformation 
 

ψ
~ = exp(iAt) ψ , (2) 
 

we obtain 

∂ψ~

∂t  = – 
i

�
 (B′ + B′′) ψ~ , (3) 

where B′ = H0
~

 – � A , B′′ = V~(r, t) , H0
~

 = eiAt H0 e
–iAt , and  

 

V~ = eiAt V e–iAt .  

Let us represent y~ in the form 
 

ψ
~ = U ψ° , (4) 
 

where U is the operator of evolution. Then 
 

∂U
∂t  = – 

i

�
 (B′ + B′′) U (5) 

 

with the initial condition U(0) = I, where I is the unit 
matrix. The solution of this equation may be represented in 

the form U = U1(B′)U2(B′′), where 
 

∂U1

∂t  = – 
i

�
 B′U1 (6) 

 

∂U2

∂t  = – 
i

�
 U 

1

–1
 B′′U1U2 = Q U2 . (7) 

The solution of Eq. (6) has the form U1 = exp

⎝
⎜
⎛

⎠
⎟
⎞– 

i

�
 B′t , 

while the solution of Eq. (7) may be formally written as 
 

U2 = T exp
⎩
⎨
⎧ 

 

– 
i

�
 ⌡⌠
Δ t

 U 
1

–1
 B′′U1

⎭
⎬
⎫ 

 

dt  = 

= ∑
n=0

∞

 
 
1
n! ⌡⌠

Δ t

 dt1 ⌡⌠
Δ t

 dt2 ... ⌡⌠
Δ t

 dtn T Q(t1) ... T Q(tn) , (8) 

 

where T is the Dyson operator. 

In certain cases this series may be summed up to 
obtain an approximate solution of the problem. Note that 
matrix elements of the operator U2 will then be expressed 

via the Fourier spectra of V(t). Knowing the operator of 
evolution U we may define the density matrix upon 
exposure to the pulse 
 

ρ = U ρ U 
–1

 . 
 
Knowing ρ we find the dipole moment d = Sp(ρd), and the 
strength of the electric field response in the wave zone 
 

E = 
1

c2 ∑
j

 
 

1
⏐R0 – rj⏐

 (<d
⋅⋅

j(rj, nj, t′)>×nj)×nj , (9) 

 

where nj is the unit vector directed from the point rj to the 

observation point R0, 
 

t′ = t – 
R0 nj

c  + 
rj nj

c  . 

 

A different approach based on the techniques of 
spectral analysis appears to be more convenient in certain 
cases.32 It is applicable to relatively low intensity of 

exciting pulse in the absence of field broadening
33
 and 

spectral diffusion within the time over which the pulse acts. 
The result of exposure of the object field to an atom may 
then be found by calculating the results of exposure of 
individual Fourier components of the pulse field to this 
atom with subsequent integration of these results over all 
virtual frequencies. Thus, if the field of the object pulse is 
given by  
 

E = E0 ε(t) cos(ωt – kr) , (10) 
 

where ε(t) describes the pulse shape, it may be represented as 
 

E = 
E0

2 ⎣
⎡
 

 ⌡⌠
–∞

∞

 ε~ (ω′) exp(i ω′t + ikr – i ω t) dω′ +
⎦
⎤

 

 
c.c.  , (11) 

 

where ε~(ω′) = ⌡⌠
–∞

∞

 ε(t) exp(– iω′t) dt . That is, the problem 

of finding the density matrix in the given approximation is 
reduced to finding a solution for the Fourier component 

ρ(ω′) when the atom is exposed to the radiation field 
 

E(ω′) = E0 ε
~(ω′) cos [(ω – ω′) t – kr] (12) 

 

and to subsequent integrating ρ(ω′) over all ω′. 
Specific calculations by the above–described 

procedures indicate that the matrices of the operator of 
evolution, obtained by chronological ordering and spectral 
analysis, coincide for small pulse area and close to the 
resonance. 

To describe the process of recording the echo–
hologram, a certain approximation for recording of the 
object field and procedure for calculating the non–
equilibrium polarization of the system must be chosen. In 
general, the electric field strength of the object wave will 
be (see Fig. 1) 
 
Ex = E0 εx(r, t) cos [ω t – gx(r, t)] , 

Ey = E0 εy(r, t) cos [ω t – gy(r, t)] , (13) 

Ez = E0 εz(r, t) cos [ω t – gz(r, t)] , 
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where E0 is the field amplitude, ε is the parameter 

specifying the spatiotemporal inhomogeneity of the field, 
gi = const defines the wavefront of the object wave, and ω 

is the cyclic carrier frequency. 
 

 
 

FIG. 1. Arbitrarily polarized object field as an 
illustration. 
 

 
 

FIG. 2. Expansion of the object field into a series in 
spherical or plane waves as an illustration. 
 

Prescribing the object wave in the form of Eq. (13) 
appears to be not always convenient for calculation of the 
field and interpretation of the results obtained. It sometimes 
appears handier to represent each Fourier component of the 
object wave as an expansion in spherical or plane waves 
(Fig. 2). In this case the object is considered as a set of 
points (denoted by the subscript n). Each point produces its 
own spherical wave. The combination of such waves at the 
point r0j yields perturbation at the site of a working particle 

in the sample. Mathematically the electric field strength at 
the point r0j may be written as 

 

E = ∑
n

 
 Anj 

exp(i kn(r0j – rn) – i ω t + i jn)

⏐r0j – ρn⏐  = 

= ∑
n

 
 Anj

′  
exp(i kn(r0j – rn) – i ω t)

⏐r0j – rn⏐  , (14) 

 

where kn = 
ω
c nn , nn = 

r0j – rn
⏐r0j – rn⏐ , and ϕn describes the initial 

phases of spherical waves, moreover, the term exp(iϕnj) may 

be introduced into the complex amplitudes Anj (the subscript j 

implies that A depends on the orientation of nn in the general 

case). When the dimensions of the object are small as 
compared to the distance to it, i.e., ⏐r0j – rn⏐ . d, l and 

⏐r0j – rn⏐ . ⏐rn⏐, the expansion in the spherical waves 

transforms into the expansion in the plane waves 
 

E = ∑
n

 
 an

′ e
i
 
kn 

r0j – i
 
ω
 
t
 .  (15) 

The form of this expansion is similar to the spatial 
Fourier transform in the plane waves, but the physical 

meaning of the coefficients an
′ is that they define the 

amplitudes of the field (amplitudes of the Fourier 
components of the field) coming from individual points of 
the object. 

Since in this approximation the dimensions of the 
resonant medium are considered to be much smaller than the 
distance to the object, perturbation at each point of the 
sample is then produced by practically one and the same 
combination of the plane waves. 

 
2. FORMATION OF ECHO–HOLOGRAMS AT  

DEGENERATE LEVELS 
 
Let us consider the effect of polarization of electric 

field of object wave pulse and of the structure of the 
resonant transition on the formation and reconstruction of 
echo–holograms. As demonstrated below, these are the 
characteristics of polarization of the electric field of the 
object wave and the type of the resonant transition, which 
appear to be decisive in certain cases of forming, 
reconstructing, and transforming such holograms. For our 
model we choose the transition on which the total moment 
change is 1/2–1/2 and consider the formation of echo–
holograms during the recording of the object field with 
arbitrary phase front, polarization, temporal structure, and 
spatial orientation. We specify the field strength of the first 
pulse of the object wave in the form of Eq. (13) and 
consider the formation of the reconstructed echo–hologram. 
In this case we take the pulse of the standing wave 
aribitrarily oriented in space for the second pulse. To this 

end we set gi = 0 (i = x′, y′, z′), εz' = cos k2r, and 

εx′ = εy′ = 0 in Eq. (13), where k2 is the wave vector of the 

running waves which form the standing wave. The vector of 
the electric field strength of the standing wave is assumed 

to be oriented along the z′ axis of the coordinate system 

(x′, y′, z′) being arbitrarily oriented with respect to the 
laboratory system of coordinates (x, y, z) used to specify 
the field of the object wave. The orientation of the 

coordinate system (x′, y′, z′) with respect to (x, y, z) will 
be determined by the Euler angles α

12
, β

12
, and γ

12
. In 

calculating the density matrix of the system after exposure 
to the pulses of the object and standing waves, account 
must be taken of the fact that each individual atom appears 
to be optically oriented after exposure to the pulse of the 
object wave; therefore, the solution for the density matrix 
of the system can be constructed in the (x, y, z) coordinate 
system. 

If the standing wave of the second pulse is arbitrarily 
oriented in space, the matrix of the operator of interaction 
with the second pulse, in the (x, y, z) system of 
coordinates, can be written in the form 
 

<J1 M1⏐V⏐J2 M2> = ∑
MK

 
 DKM1

J1  D
KM2

J2  VJ1K
 J2

 M , (16) 

 
where VJ1K J2M is the matrix element of the operator of 

interaction in the (x′, y′, z′) system of coordinates and 
D JMM′

 are the Wigner functions, which specify the 

conversion between the systems of coordinates for the 
first and the second pulses. The virtual transitions and 
the spectrum of excitation for the reconstructed echo–
hologram are shown in Fig. 3. 
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FIG. 3. Formation of echo–holograms onto degenerate 
energy levels. a) Scheme of energy transitions excited 
during recording of the echo–holograms, b) spectrum of 
excitation: ΔΩ is the spread of frequencies (inhomogeneous 
broadening) and ω' are the frequencies of the Fourier 
spectrum of the object wave pulse. 
 

To obtain an adequate polarization of the echo–
hologram response given by Eq. (9), the components of the 
vector d must be specified in the right–handed system of 
coordinates irrespective of the direction of observation. Thus 
it appears convenient to introduce a mobile system of 
coordinates (x1, y1, z1), affixed to that direction with the z1 

axis, for example, along the direction of response n, and to 
convert the components of the vector d to this system of 
coordinates [with the use of the rotation matrix A(α, β, γ)]. 

The angular dependence of the electric field strength 
in the response of the reconstructed echo–hologram was 
found in Ref. 20 in the case in which the pulse spectrum 
was narrower than the spectrum of the inhomogeneously 
broadened line 
 

E ∼ ∑
j

 
 ⌡⌠
–∞

∞

 dω′ f2j f4j 
a

2j
*2

⏐a
2
⏐

2 sin2θ
2j
 × 

 

× {[(cosα cosβ cosγ – sinα sinγ) F1 + 
 

+ (cosα cosβ sinγ + sinα cosγ) F2 + cosα sinβ F3] i1 + 
 

+ [(sinα cosβ cosγ + cosα sinγ) F1 – 
 

– (– sinα cosβ sinγ + cosα cosγ) F2 + sinα sinβ F3] j1} × 

 
× exp(2τ/T2) exp[– i(Ω + ω′)(t′ – 2τ)] + c.c. , (17) 
 

where a2 is the matrix element of the operator of interaction 

with the standing wave pulse, θ2 is the standing wave pulse 

area, i1 and j1 are the unit vectors of the coordinate system 

(x1, y1, z1) affixed to the direction of response, τ is the time 

interval between the pulses of the object and standing 
waves, T2 is the rate of the irreversible transverse 

relaxation, 
 

F1 = ε~z e
–ig∼z sin2β12 cosγ12 – ε~x e

–ig∼x × 

× (sin2β12 cos2γ12 – cos2β12) – ε~y e
–ig∼y 

sin2β12 sin2γ12 , 
 

F2 = ε~z e
–ig∼z sin2β12 sinγ12 – ε~x e

–ig∼x × 

× sin2β12 sin2γ12 + ε~y e
–ig∼y(sin2β12 cos2γ12 + cos2β12) , 

 

F3 = – ε~z e
–ig∼z cos2β12 + ε~x e

–ig∼x sin2β12 cosγ12 + 

+ ε~y e
–ig∼y 

sin2β12 sinγ12 , 
 

ε~i exp(– i g~i) is the Fourier spectrum of the object wave 

pulse envelope,  

f2 = 
1
2 (cosθ1 ϕ + ϕ′ + cosθ1 ϕ – ϕ′) ,  

 

f4 = ( ϕ + ϕ′)–1 sinθ1 ϕ + ϕ′ + ( ϕ – ϕ′)–1 sinθ1 ϕ – ϕ′ ; 

θ1 = �–1E0 dΔ t1 , ϕ = 
1
6 
∑
i

 ε~i ,  

ϕ′ = 
1
3 [ε~z

2 ε~x
2 sin2(g~x – g~z) + ε~z

2 ε~y
2 sin2(g~y – g~z) + 

+ ε~x
2 ε~y

2 sin2(g~y – g~x)]1/2 . 
 

Analysis of Eq. (17) shows that the polarization of the 
reconstructed echo–hologram response depends in the 
general case on the direction of observation as well as on 
the orientation of the standing wave field. Therefore, the 
polarization of response can be inverted by varying the 
angles β12 and γ12, which determine the orientation of the 

electric field of the standing wave. And because in the 
general case the polarization of the object wave field is 
different in different parts of the sample, we may obtain 
differently polarized responses by scanning the standing 
wave across the volume of the sample. That is, when the 
information about the object is embedded in the polarization 
of the object wave pulse, it can be read. The wavefront 
phase of the reconstructed echo–hologram response turns 
out to be dependent on the wavefront phases of all the 
components of electric field of the object wave (coefficients 
Fi). Moreover, the contribution of each component to the 

response wavefront appears to be dependent on the direction 
of observation and on the relative orientation of the fields 
of the object and standing waves. Thus directional change 
(i.e., transformation) of the response wavefront is possible 
by varying the corresponding Euler angles. 

The factor 
 

f2 f4 sin
2θ2 (18) 

 

in expression (17) depends on the spatiotemporal structure 
of the object wave field, which may result in nonlinear 
reproduction of the echo–hologram. By expanding 
expression (18) into a series in the Bessel functions J and 
the Chebyshev polynomials T we find 

sin2θ2 f2 f4
 = 

1
4 ⎣
⎡ 
 

1 –
 
J0(2θ2)) – 2 ∑

n=1

∞

 
 J2n(2θ2) ⎦

⎤ 

 
cos(2nk2rj)  × 

 

× ∑
n′=0

∞

 
 (–1)n′ 

⎣
⎡J2n′+1(2θ1)⎝

⎛
⎠
⎞1

x T2n'+1(x) + 
1

x′ T2n'+1(x′)  + 

⎦
⎤+ J2n′+1(θ1) T2n′+1(x + x′) 

⎝
⎛

⎠
⎞1

x + 
1

x′

 
, (19) 

 

where x = ϕ + ϕ′ and x′ = ϕ – ϕ′. 
That is, the complex dependence of the factor given by 

Eq. (18) on the spatiotemporal structure of the field of the 
object wave appears to be separated in Eq. (19) in the 
Chebyshev polynomials. Therefore, it follows from 
expression (19) that linear reproduction of the echo–
hologram is possible only if a major contribution to its  
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response comes from the term of the expansion containing 
J1(2θ1). In this case T1(x) = x and f2 f4 = J1(2θ1). As the 

electric field strength of the object wave pulse increases, 
other terms of expansion (19) start to make a contribution 
to the response of the echo–hologram, resulting in its 
nonlinear reproduction. Thus the limiting condition θ1 < 1 is 

imposed on the object pulse area. 
Note also that F1, F2, and F3 depend in the general 

case on all the quantities εi and gi resulting in a shift and 

transformation of the spatiotemporal structure of the 
response to each component of the electric field of object 
wave, so that the efficiency of such transformations depends 
on the relative orientation of exciting fields. 

Now we consider two important cases in which the 
object wave has close–to–linear or elliptic (circular) 
polarization. 

In the first case with arbitrary orientation of the 
polarization vectors of electric fields of object and standing 
waves the polarization of response will be elliptic. If the 
polarization vectors of object and standing waves are 
parallel, that is, α

12
 = β

12
 = γ

12
 = 0, we have F

1
 = F

2 
= 0, 

F3 = –ε~zze
–ig∼z, and 

 

E ∼∑
i

 
 ⌡⌠
–∞

∞

 dω′J1(2θ1)(1 – J0(2θ1))[– cosα sinβ ε~z exp(–ig~z) i1– 

– sinα sinβ ε~z exp(– ig~z) j1] exp
⎝
⎛

⎠
⎞– 

2τ
T2

 × 

 

× exp[–i(Ω + ω′)(t′ – 2τ)] + c.c. (20) 
 

If we represent ε~ze
–ig∼z as an expansion in the plane 

waves 
 

ε~z exp(– ig~z) = ∑
n

 
 εn exp⎝

⎛
⎠
⎞– innr 

ω – ω′
c  , (21) 

 

then the following conditions of spatial wave 
synchronization will be satisfied for individual spatial 
components of the electric field of the echo–hologram 
response: 
 

nen = nn . 
 

Thus the wavefront of the response appears to be phase 
conjugate so that conditions of observations for each 
component of the response will be α = 90°, β = 270°, and 
γ = 270°. 

For T 2 
* n Δt integration over ω′ in Eq. (20) yields the 

shape of the response 
 

<exp(– iω′(t – 2τ) ε~z exp(– ig~z)>ω′
 , (22) 

 
which is the inverse Fourier–transform of the complex 

conjugate value of ε~zexp(– i~gz). Therefore, the waveform of 

the response in this particular case is reversed in time to that 
sequence of events the information about which is embedded 
in the object wave (see Fig. 4). In Ref. 34 ruby was used to 
test experimentally the phase conjugation (of spherical wave) 
and reversed waveform of the echo–hologram response for 
linearly polarized exciting pulses. Block diagram of the setup 
used to test the phase conjugation of the echo–hologram in 
the ruby crystal [onto the transition 4A2 –

2E(E)] is shown in  

Fig. 5a. The sample S is upon exposure to the two pulses of 
the running and standing waves. The radiation of the first 
pulse is focused with the lens L of focal distance R onto the 
sample S. The second pulse, delayed by the optical delay line 
(ODL), is fed into the same sample as a plane wave. The 
standing wave is formed using a mirror. The reconstructed 
echo–hologram signal is fixed in the direction opposite to that 
of the first pulse by means of the semitransparent mirror 
STM2. The divergence of this beam and hence the curvature 

radius of its wavefront may be found from the diameter of the 
diaphragm d2. An increase of the diameter d2 to d1 

corresponded to a rise in the response intensity (if the distance 
d2–STM2 – S (was equal to SL). Further increase of the 

diameter of the diaphragm (d2 > d1) did not produce a 

noticeable rise in the signal intensity. This meant that the 
divergence of the echo–signal beam was equal to the angle of 
convergence of the object wave beam, which corresponded to a 
situation when the wavefront of the reconstructed echo–
hologram response was phase–conjugate to the wavefront of 
the running wave. Figure 5b shows the waveform of the 
reconstructed echo–hologram response, in which one can 
observe the reversed waveform of the response to that of the 
object wave. 

Now we consider the second limiting case in which the 
polarization of the electric field of the object wave is close to 
elliptic. In this case the observing conditions for the individual 
spatial components of the echo–hologram response will be 
α = γ = 0 and β = 180°, while Fi will be given by the formulas 
 

F
1
 = – ε~x e

–ig∼x 
(sin2β

12
 cos2γ

12
 – cos2β

12
) – 

 

– ε~y e
–ig∼y 

sin2β
12

 sin2γ
12
 , 

 

F2 = – ε~x e
–ig∼x 

sin2β
12

 sin2γ
12
 + 

 

+ ε~y e
–ig∼y(sin2β

12
 cos2γ

12
 + cos2β

12
) . (23) 

 

It follows from Eq. (23) that γ
12
 remains equal to zero 

when the orientation of the vector of the electric field 
strength of the standing wave changes only in the plane in 
which the wave vector k

2
 lies. When the angle β

12
 changes 

from 0 to 90° (that is, the polarization vector of the 
standing wave changes its direction), the polarization of the 
response converts from counterclockwise at β

12
 = 0° to 

clockwise at β
12
 = 90° (for counterclockwise polarization of 

the object pulse). The effect of inversion of polarization of 
the echo–hologram response was predicted in Refs. 20–22 
and experimentally observed in Ref. 23. The experimental 
setup is shown in Fig. 6. 
 

 
 

FIG. 4. Phase conjugation and reversion of the echo–
hologram form in case of linearly polarized pulses as an 
illustration. 
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FIG. 5. Reconstructed echo–holograms in ruby (after 
Ref. 34). a) Block diagram of the experimental setup: 
1) low–temperature ruby laser, 2) tuning laser, 
3) synchronous photodetector, 4) optical delay line (ODL), 
5) semitransparent mirrors (STM's), 6) recording 
photodetector, 7) spherical lens of focal distance R, 
8) examined ruby crystal, 9) mirrors, and 10) period meter. 
Here d1 and d2 are diaphragms. b) RSE (reversed signal of 

exho–hologram waveform). 
 

 

 
 

FIG. 6. The effect of inversion of photon echo–polarization 
in ruby (from Ref. 23). a) Scheme of excitation of the 
reconstructed photon echo by the circularly polarized 
running wave (RW) pulse and linearly polarized standing 
wave (SW) pulse: 1) semitransparent mirror, 2) quarter–
wave plate, 3) examined ruby crystal, 4) mirror forming the 
standing wave, and 5) analyzer. b) The dependence of the 
intensity of echo–signal IRSE on the angle of rotation of the 

analyzer. 
 

To excite the RSE by the circularly polarized radiation, 
the quarter–wave plate 2 was placed in the beam of running  

object wave (RW). Sense of linear polarization of the response 
at the exit from the quarter–wave plate is determined by the 
sense of circular polarization of the RSE. If the circular 
polarization of the response and that of the RW have one 
sense, the response at the exit from the quarter–wave plate 
will be linearly polarized and the sense of its polarization will 
be perpendicular to that of the linear polarization of the RW. 
This situation is similar to the rotation of the plane of 
polarization by 90° due to the double passage of the quarter–
wave plate. If the sense of circular polarization of the response 
is opposite to that of the RW after it passes through the 
quarter–wave plate, then the response will be linearly 
polarized due to the passage of the quarter–wave plate and 
will have one sense of polarization with the initial linear 
polarization of the RW. In the same way, using ruby as an 
example, we were able to find that if the RSE was excited by 
a pulse of the circularly polarized running wave and a pulse of 
the linearly polarized standing wave (SW) (γ

12
 = 0 and 

β
12
 = 90°), the response would be circularly polarized in the 

direction counter to that of polarization of the RW. This 
result is testified by the dependence of the RSE intensity on 
the angle between its sense of polarization and the sense of 
initial polarization of the RW shown in Fig. 6 b. 

Stimulated echo–holograms recorded onto degenerate 
levels have similar properties. Thus a limitation is imposed on 
the object pulse area (of the first or second pulse), which 
follows from an expansion similar to expression (20) (see 
Ref. 21). Linear reproduction of the stimulated echo–
hologram is feasible only when θ ≈ 1. As the electric field 
strength of the object wave increases, the dependence of the 
electric field strength of the response on the spatiotemporal 
structure of the object wave field becomes nonlinear. Such a 
behavior of the echo–hologram response was experimentally 
observed in Ref. 35, where all the pulses were linearly 
polarized and the second was the code (object) pulse. 

Theoretical analysis performed in Ref. 21 revealed that 
when all three pulses are identically linearly polarized and the 
spectral width of the object wave pulse is narrower than the 
width of the inhomogeneously broadened transition line, the 
object pulse waveform may be reproduced with minimum 
distortions. Moreover, if the first pulse is the object one, the 
spatiotemporal structure of the field of the echo–hologram 
response will be conjugate to that of the object wave. Now, if 
the object pulse is second, the reproduced echo–hologram will 
reconstruct the spatiotemporal structure of the object wave 
field (Fig. 7). 

The last case was experimentally studied in Ref. 35, and 
Fig. 8 shows waveforms illustrating the correlation between 
the shapes of the echo–hologram response and object pulse. 
 

 
 

FIG. 7. The process of formation of stimulated echo–
holograms by the linearly polarized pulses as an illustration. 
a) Object pulse is first and b) object pulse is second. 
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FIG. 8. The effect of correlation between the waveforms of stimulated photon echo in ruby35: a) object pulse and b) echo–
pulse. 

 

Recording and reconstructing the stimulated echo–
holograms (SEH) make it possible to compare (identify) the 
phase structure of the object field.21 This is done by 
recording the object pulse and adding the reference pulse 
(pulses) of known phase front. That third pulse has a flat 
wave front. In this case the electric field strength of the 

echo–hologram response peaks at ~g(2)
z  = ~g(1)

z , that is, when 

the phase fronts of the object and reference pulses are 
identical. The orientation of the vector k3 may then be 

arbitrary, and the wavefront of the response may be plane. 

Meanwhile, if ~g(2)
z  ≠ ~g(1)

z , the spatial phase synchronization 

is either completely disrupted or occurred only for a limited 
number of spatial components of the electric field strength 
of the object and reference waves, resulting in a decrease in 
the integral intensity of the response. That is, it is 
experimentally feasible to use a set of prescribed reference 
fields with known wavefronts to identify the front of the 
object pulse (to recognize its image) observing the integral 
intensity of the stimulated echo–hologram response. 

 
3. MULTIFREQUENCY ECHO–HOLOGRAPHY 
 
Recording and reconstructing the echo–holograms onto 

multilevel systems is of particular interest when the 
frequency conversion of the reconstructed signals is 

feasible
30,31

 since information about the object can be 
recorded at different frequencies using object pulses with 
several carrier frequencies analogous to color holography in 
non–resonant media.1 

Information about the color of the object in the echo–
hologram is apparently embedded in a set of lattices with 
non–equilibrium population (polarization) of different 
energy levels of the multilevel system. Figure 9 illustrates a 
possible scheme of recording the echo–hologram onto a 
four–level system, the three carrier frequencies in which 
play the role of colors (note that in principle echo–
holography permits one to use any number of frequencies, 
provided the corresponding transitions present in the 
sample). The first or second pulse may be the object pulse. 
Color echo–holography may be used in systems of 
multichannel data processing and storage. 

 

 
 

FIG. 9. Formation of color echo–holograms in the system 
sharing a common energy level. 

Now we consider the process of formation of the 
stimulated color echo–hologram (Fig. 9). In this case the 
electric field strength of the ηth pulse is written as 
 

E
η
 = ∑

i=1

3

 
 E 0i

 (η)
 ε i

(η)
(r, t) cos(ωi t – g i

(η)
(r, t)) , (24) 

 

where ωi is the carrier frequency, E0i is the amplitude of the 

electric field strength, gi is the wavefront, and ε i

(η)
 is the 

parameter describing the spatiotemporal inhomogeneity of 
the field. In this particular case the Fourier–analysis is 
inapplicable in calculating the operator of evolution of the 
system. Therefore, it is necessary to use the technique of 
chronologic ordering outlined in Sec. 1. The Hamiltonian of 
the system may be represented in the form 
 

H0 = � Ω1 

⎝
⎜
⎜
⎛

⎠
⎟
⎟
⎞0 0 0 0

0 1 0 0
0 0 Γ1 0

0 0 0 Γ2

 ,  
Ω1 Γ1 = Ω2 , 

Ω1 Γ2 = Ω3 ,
 (25) 

 

where the quantities Γi characterize the non–equidistant 

system spectrum. The Hamiltonian of interaction of the jth 
particle with local fields may then be written in the form 
 

H in
j  = � ΔΩ

1
 j 

⎝
⎜
⎜
⎛

⎠
⎟
⎟
⎞0 0 0 0

0 1 0 0
0 0 Γ1 m1 0

0 0 0 Γ2 m2

 , (26) 

 

where ΔΩ1 is the deviation of the frequency of the 1–2 

transition from its statistical mean and mi defines 

dissimilarity of the interaction between the optical electron 
in its different states and the local field. 

Taking into account all the above we obtain for the 
spatiotemporal structure of the field of the echo–hologram 

response (e.g., on the 1–2 transition)
31
 

 

E ∼
 
∑
j n

 
 B1 A 1

(3) S
~

1
(3) sin

2θ1

�
 sin

2θ3

� ⎩
⎨
⎧ 

 
A 1

(1)* A 1
(2)S

~
1 × 

 

×⌡⌠
–∞

∞

 dΔΩ1S
~

1
(2)(ΔΩ1)exp

⎩
⎨
⎧

⎭
⎬
⎫iΔΩ1(te – t1 – 2τ) – 

2τ
τ12

 + ikep(rj – R0) + 

 

+

 

A 2
(1)* A 2

(2) S
~

 2
(1)* ⌡⌠

–∞

∞

 dΔΩ1 S
~

2
(2)(Γ1m1ΔΩ1)

 

× 

 

× exp
⎩
⎨
⎧

⎭
⎬
⎫iΔΩ1(te – τ1 – τ) – i Γ1m1ΔΩ1τ – 

τ
τ12

 – 
τ

τ31
 + kep rj  + 
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+ A 3
(1)* A 3

(2) S
~

 3
(1)* ⌡⌠

–∞

∞

 dΔΩ1 S
~

3
(2)(Γ2 m2ΔΩ1) × 

 

× exp
⎭
⎬
⎫

⎩
⎨
⎧

⎭
⎬
⎫iΔΩ1(te – τ1 – τ) – i Γ2 m2ΔΩ1τ – 

τ
τ12

 – 
τ

τ41
 + kep rj (27) 

 

where S
i

(η)

 = ε
i

(η)

 exp(– i gi),  A i

(η)

 = d1i 

E 0 i 
(η)

2 ,  

 

S
~

i = ⌡⌠

t
η
 – 

Δ t
η

2

t
η
 + 

Δ t
η

2
 

 
Si exp 

⎝
⎜
⎛

⎠
⎟
⎞– i 

Δi

�
 t  d t,  

 

τij are the relaxation coefficients for the off–diagonal elements 

of the density matrix, kep are the wave vectors of the plane 

waves from the spatial expansion of the response field. Each 
integral in expression (27) is the inverse Fourier transform of 

the corresponding spectrum 
~
S(2)

i  (object pulse). By expanding 

S(2)
i  into a series in the plane waves with the vectors k(2)

ip , we 

obtain from Eq. (27) the conditions of phase synchronization 
for the response of the color echo–hologram 
 

kep + k i
(1) – k ip

(2) – k i
(3) = 0 (28) 

 

and the moments at which responses are produced  
 

te′ = τ1 + 2τ ; (29) 
 

t e′′
 = τ1 + τ + Γ1 m1τ; (30) 

 

t  e′′′
 = τ1 + τ + Γ2 m2τ; (31) 

 

where the first response yields the undisturbed information 
about the first color (transition I–II), while the second 
response has the transformed temporal structure of the 
second color (transition I–III), moreover, the real–time 
scale of this response is transformed by applying the factor 
1/Γ1m1. The temporal scale of the third response is 

similarly transformed (by applying the factor 1/Γ2 m2). The 

echo–hologram responses on the transitions I–III and I–IV 
have similar structures. Figure 10 shows virtual echo–
hologram responses. Here Ai and Bi are the events, 

information about which was embedded in the object pulse. 
When the first pulse is the object one, reverse sequence 

of events recorded in the echo–hologram will be observed 
simultaneously with transformation of the time scale. 

 

 
 

FIG. 10. Virtual stimulated color echo–hologram responses. 

When the inhomogeneous broadening of lines on 
different transitions are uncorrelated, the echo–hologram 

response will contain only the responses at the moment te′, 
without any transformation of the real–time scale. 

One may choose a LaF3:Pr3+ crystal for a resonance 

medium to record and transform color echo–holograms. 
Detailed experiments to study the salient features of formation 
of photon echo–signals have already been carried out on the 
3H4 –

3P0 (see Refs. 36–37) and 3H4–
1D2 (see Ref. 38) 

transitions in that crystal. Note also that the echo–hologram 
may be reproduced using the state 3H4 as well as other energy 

transitions, e.g., 3H4–
3P1,2. In such cases the color of the 

object may be changed together with the real–time scale and 
the waveform of the response field. Taking into account that 
the number of the alternative methods of three–pulse 
excitation of signals of the stimulated photon echo in 
multilevel systems is large, such transformations may be 
performed in various regimes including the multi–quanta 
regime. 

The present study was supported by the Russian Fund 
for Fundamental Studies. 
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