
V.I. Reshetskii Vol. 6,  No. 7 /July  1993/ Atmos. Oceanic Opt.  503 
 

0235-6880/93/07  503-06  $02.00  © 1993 Institute of Atmospheric Optics 
 

REFLECTION OF ELECTROMAGNETIC WAVE FROM AN OSCILLATING 

MIRROR 
 

V.I. Reshetskii 
 

Pacific Institute of Oceanography, 
Far–Eastern Branch of the Russian Academy of Sciences, Vladivostok 

Received March 19, 1993 
 

The problem on electromagnetic wave reflection from an oscillating mirror has 
been studied theoretically. An exact solution for the reflected wave is obtained. This 
solution represents an infinite superposition of plane monochromatic waves at 
combination frequencies with proper amplitudes and reflection angles. Some possible 
applications of this effect, in particular, to frequency conversion of optical laser 
radiation into the UV and X–ray ranges are discussed. 

 
1. INTRODUCTION 

 

As is well known,1 the exact solution of the problem 
on the monochromatic wave reflection from a mirror 
moving at a constant velocity has made for the 
appearance of special theory of relativity. A short time 
later the relativistic Doppler effect caused by reflection 
of radiation from moving interface attracted attention of 
researchers in connection with its practical applications. 
So in 1952 Landecker treated the normal reflection of 
electromagnetic wave from the leading front of relativistic 
electrons propagating counter to this wave. He found the 
conditions of considerable increase in frequency and 
amplitude of a reflected wave at the relativistic velocities 
of interface movement.2 At that time, however, the 
attempts to observe this effect experimentally failed due 
to insufficient electron density in a beam. 

Lampert3 called his attention to the fact that 
relativistic effects caused by wave reflection from the 
moving interface could be obtained without relativistic 
velocities. To do this, he offered to use decelerating 
systems in which phase velocity was considerably lower 
than vacuum velocity.3 

Totaro4 theoretically investigated reflection and 
refraction of waves from moving interface between two 
media. In Refs. 5–14 further investigations and 
generalization of the above–mentioned results were made. 

These theoretical investigations were experimentally 
tested. The Doppler shift of frequency of electromagnetic 
waves reflected from the front of a shock wave 
propagating in argon was experimentally observed in 
Ref. 15. The estimated relative change of frequency 
equalled 10–3%. The experimental technique allowed Hey 
et al.15 to measure the propagation velocity of the shock 
wave with high accuracy in spite of so small frequency 
change caused by reflection. Zagorodnov et al.16 studied 
reflection and frequency shift of electromagnetic wave 
caused by reflection from plasma front moving at a 
velocity of about 107 m/s. The experiment was carried 
out in a decelerating system in the form of a spiral 
waveguide in which the wave velocity was about 1/200 
of the velocity of light in vacuum. The relative frequency 
shift was equal to about 20%. However, the relativistic 
increase of wave amplitude caused by reflection was not 
observed due to insufficient plasma density. 

In a number of experiments the frequency change 
caused by multiple reflection of waves from moving 
plasma was observed. Linhart and Ornstein17 measured  

the frequency increase due to multiple reflection of waves 
from approaching walls of vacuum cavity created in 
plasma. In the experiments performed by Zagorodnov et 
al.18 the frequency increase by a factor of 2.3 was 
obtained due to multiple reflection from plasma piston 
moving at a velocity of 2⋅107 m/s. Consequently, the 
electromagnetic wave exhibited about a thousand of 
reflections. 

Sixfold frequency increase and twofold energy 
increase were experimentally obtained in Ref. 19 due to 
wave reflection from the front of an electron beam with a 
current of 2 kA and electron energy of 1 MeV. Analogous 
results were obtained by Buzzi et al.20 

From the above–listed experimental results one can 
see that experiments failed to obtain a large increase of 
frequency and amplitude of wave due to reflection from 
the interface moving at a constant velocity. It is 
connected with insufficiently high velocity of the 
interface or with low density of reflecting medium in the 
form of relativistic electron beams or plasma fluxes. Here 
we are pinning our hopes on the progress of high–current 
electron and plasma accelerators.1 

The above–mentioned investigations were connected 
with uniform movement of the interface. The studies of 
wave reflection from irregulary moving interfaces are the 
natural generalization of these results and provide more 
effective frequency conversion. The case of wave 
reflection from an oscillating interface21–23 is most 
interesting in this respect, since any movement of the 
interface can be always represented in the form of the 
Fourier integral or Fourier series. This case can be simply 
realized experimentally using an electroacoustic 
transducer as an oscillating interface. This problem is 
considerably more complicated in theoretical aspect, because it 
deals with the problems of mathematical physics with variable 
boundary conditions depending on time. For this reason only 
approximate solutions were obtained using different 
methods.21–23 These solutions are true under certain 
sufficiently limited conditions. The second difficulty is 
connected with the application of relativity theory to 
noninertial reference systems24 to which we affix the 
oscillating interfaces. Probably, this is one of the reasons why 
the fundamental results were obtained for acoustic waves. 
However, as was shown in Ref. 24, relativity theory can also 
be applied to the noninertial reference systems. The 
mathematical techniques for electrodynamics of moving media1 
are direct confirmation of this fact. They allow us to treat the 
boundary value problems for a single observer at rest.  
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There is no need for the repeated use of the Lorentz 
transformations in going from one coordinate system to 
another. 

 
2. PROBLEM FORMULATION 

 
Let an electromagnetic wave with electric field 

strength  
 

E = 
1
2 A exp[i(κx x + κz z – ω t)] + c.c. (1) 

 
be incident on a mirror oscillating along its normal being 
parallel to the z axis  
 
z = z0 = D sin(Ω t + ϕ) , (2) 

 
where D is the amplitude of displacement of the mirror. The 
coordinate plane (x, z) coincides with the plane of the wave 
incidence. Proposed theory can be experimentally tested by 
spray of a specular layer on a piezoelectric transducer with 
the resonant frequency Ω. The given problem is most simply 
solved in the laboratory coordinate system in which 
expressions (1) and (2) have been written down. The 
boundary conditions in this coordinate system have the 
following form1:  
 

[n, E + E(r)] = 
νn

c  (B + B(r)) , (3) 

 
where n is the normal to the surface of the mirror; νn is the 

instantaneous velocity of the mirror along its normal; c is 
the speed of light in vacuum; B is the magnetic field 
strength of incident wave; E(r) and B(r) are the electric and 
magnetic field strengths of the reflected wave, respectively. 
Obviously, refracted waves are absent and this is taken into 
account in boundary condition (3). 

For brevity let us restrict our consideration to the case 
in which wave (1) is polarized perpendicularly to the 
incidence plane, e.g., to E = (0, Ey, 0). Then from Eq. (3) 

it follows 
 
Bz + B z

(r) = 0 at z = z0 . (4) 

 
We note that boundary conditions (3) and (4) refer to the 
moving interface. However, the corresponding fields are 
treated in the laboratory coordinate system in which the 
reflected wave parameters are measured. 

 
3. SOLUTION TO THE PROBLEM WITH TIME–

DEPENDENT BOUNDARY CONDITIONS 

 
To use boundary condition (4), we must define the 

magnetic field strength of incident wave. Using Maxwell's 
equation 

 
∂B
∂t  = – c rotE 

 

and expression (1), we find 
 

B = 
1
2 [ ]ck

ω , A  exp[i(κx x + κz z – ω t)] + c.c. , 

 

By substituting Eq. (2) into this expression, we find the 
expression for magnetic field strength near the oscillating 
interface when the observer is at rest 

B(z0) = 
1
2 [ ]ck

ω , A e
iκx x

∑
n=–∞

∞
 
 Γn(κz D) × 

 
× exp[i(n(Ω t+ ϕ) – ω t] + c.c. , (5) 
 
In the derivation we made use of the Fourier series 
expansion in the Bessel functions25  
 

exp(iξsinα) = ∑
n=–∞

∞
 
 Γn(ξ) exp(i nα) . (6) 

 
Here Γn(ξ) is the nth order Bessel function of the first kind. 

It is seen from Eq. (5) that the field at the interface is 
described by the product of two periodic functions having 
two fundamental periods 2π/ω and 2π/Ω. Consequently, in 
the general case the solution for the reflected wave must be 
found as a product of two periodic functions having the 
same fundamental periods 2π/ω and 2π/Ω. Taking into 
account the above–mentioned, we represent the solution for 
the electric field strength of the reflected wave in the form 
 

E(r) = 
1
2 ∑
m=–∞

∞
 
 Am exp[i(κ x

(m)x – κ z
(m)z – (ω – mΩ) t)] + c.c. , (7) 

 
where Am and k(m) are unknown values that must be 

determined. We note that certain of the amplitudes Am may 

be equal to zero.  
Using solution (7) and Maxwell's equations, we find 

the corresponding expression for the magnetic field strength 
of reflected wave 

 

B(r) = 
1
2 ∑
m=–∞

∞
 
 

c[k(m), Am]

ω – mΩ  exp[i κ(m)r – (ω – mΩ) t)] + c.c. (8) 

 
To make use of boundary condition (4), we determine the 
magnetic field at the interface, more precisely, near it. 
Substitution of Eq. (2) into Eq. (8) with allowance for 
expansion (6) yields 

 

B(r)(z0) = ∑
m=–∞

∞
 
   ∑

p=–∞

∞
 

 
 
c[k(m), Am]

2(ω – mΩ)
 Γp( – κ z

(m)D) × 

 

× exp[i(κ x
(m)x + (m + p)Ω t – ω t + pϕ)] + c.c. , (9) 

 
Further we make use of the technique of variable 

separation after substitution of Eqs. (5) and (9) into 
Eq. (4), e.g., equate the functions of the independent 
variables x and t. As a result, we obtain:  

 

κx = κ x
(m) ,  sinθm = 

ω
ω – mΩ sinθ , (10) 

 
where θ is the incidence angle of wave (1) and θm is the 

reflection angle of combination wave denoted by the 
subscript m in solutions (7) and (8). From Eq. (10) it is 
seen that the reflection angle depends on the subscript m, 
e.g., each combination wave with the subscript m has its 
proper reflection angle which differs from the other. 
Consequently, Snell's reflection law is violated in the case 
of reflection from the oscillating interface. The singular case 
ω – mΩ = 0 is not difficult because the corresponding  
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amplitude of combination wave is equal to zero, as is seen 
from further treatment. 

By equating the functions of the independent variable 
t, we obtain 

 

Γn(κz D) = – ∑
m=–∞

∞
 
 

ω[k(m), Am]z exp(–imϕ)

[k, A]z (ω – mΩ)
 Γn–m(– κ z

(m)D). (11) 

 
In the derivation of this equation the necessary equality for 
exponential coefficients of the Fourier basis n = m + p was 
taken into account. 

Expression (11) represents the infinite system of 
equations for unknown amplitudes Am. To solve this system, 

we make use of the addition theorem for the Bessel 
functions,25 according to which  

 

Γn(a + b) = ∑
m=–∞

∞
 
  Γm(a) Γn–m(b) . 

 
The similarity of equation (11) to this theorem 

becomes obvious if we take 
 

– 
ω[k(m), Am]z exp(–imϕ)

[k, A]z (ω – mΩ)
 = Γm(κz D + κ z

(m)D) , 

 
from which we find the solution for the amplitudes 
 

A y
(m) = – exp(imϕ) Γm(κz D + κ z

(m)D) 
ω – mΩ

ω  Ay . (12) 

 
From Eq. (12) it is seen that really Am = 0 when ω – mΩ = 0 

as was mentioned above. 
The reflected waves must satisfy not only to the 

boundary conditions but also to the corresponding 
dispersion relations in vacuum  

 
(ω – mΩ)2

c2  = (κ x
(m))2

 + (κ z
(m))2

 , 

 

where the component of the wave vector κ(m)
z  is unknown. 

From the dispersion relations we find 
 

κ z
(m) = 

Ω
c  ⎝
⎛

⎠
⎞m2 – 2 

ω
Ω m + 

ω2cos2θ
Ω2

1_

2
 . (13) 

 

Treating the radicand in the right side of Eq. (13) as a 
quadratic equation for m, we find its roots 

 

m1 = 
ω
Ω (1 – sinθ) , m2 = 

ω
Ω (1 + sinθ) . (14) 

 
It is clear that the attenuating combination waves 
correspond to m1 < m < m2 and propagating waves 

correspond to m < m1 and m > m2. We note that two waves 

propagating along the interface in the opposite directions 
for which sinθm1

 = 1 and sinθm2
 = – 1 correspond to 

m = m1 and m =m2 in accordance with Eq. (9).  

Obviously, cosθm is transformed into hyperbolic cosine 

which vanishes at infinity in the case of attenuating waves. 
By substituting the amplitudes given by Eq. (12) into 

Eqs. (7) and (8), we obtain the exact solution for reflected  

wave in the form of linear superposition of the combination 
waves 

 

E(r) = – 
1
2 ∑
m=–∞

∞
 
  exp(imϕ) Γm(κz D + κ z

(m)D) 

ωm

ω  A
–

 × 

 

× exp[i(κ x
(m)x – κ z

(m)z – ωmt)] + c.c. , (15) 

 
where ωm = ω – mΩ is the frequency of corresponding 

combination wave. We also obtain 
 

B(r) = – 
1
2 ∑
m=–∞

∞
 
  exp(imϕ) Γm(κz D + κ z

(m)D) 
c
ω [k(m), A

–
] × 

 

× exp[i(κ x
(m)x – κ z

(m)z – ωmt)] + c.c. , (16) 

 
It is easy to verify that the specific case of reflection from 
the immobile mirror follows from the obtained solution. 

 
4. ANALYSIS AND DISCUSSION OF THE OBTAINED 

RESULTS 

 
Solutions (15) and (16) can be simplified in a number 

of cases which are encountered in practice. For convenience 
we write down a single combination wave from solution 
(15) in general form 

 

E(m) = – 
exp(imϕ)

2  Γm(κz D + κ z
(m)D) 

ωm

ω  A × 

 

× exp[iωm(
x
c sinθm – 

z
c cosθm – t)] + c.c. (17) 

 
It should be noted that the argument of the Bessel function 
in Eq. (17) depends on its order 
 

Γm(κz D + κ z
(m)D) = Γm( )2κz D – m 

ΩD
c  cosθm  , (18) 

 
where we took into account that  
κ z

(m) = ωm cosθm/c = (ω – mΩ) cosθm/c . 

Further taking into account that ΩD = v is the 
amplitude of the interface velocity, expression (18) assumes 
the form 
 

Γm(κz D + κ z
(m)D) = Γm(2 α cosθ – m β cosθm) , (19) 

 

where α = ωD/c and β = ν/c = ΩD/c. We note that β ≤ 1 
always, whereas α can be as large as is wished since the 
amplitude of displacement D is unlimited, if we keep in 
mind the low–frequency oscillations of the interface. As is 
well known, the mth order Bessel function has maximum 
when its argument is of the same order. This allows us to 
control the spectral composition of the combination waves 
through change of the amplitude D or the incidence angle θ. 
Using the identities25 
 

Γ–n(α) ≡ (–1)n Γn(α) ≡ Γn(– α) , 
 

we analyze expression (19). For m < 0 we have 
 

Γm(κz D + κ z
(m)D) = (–1)m Γ⎮m⎮(2 α cosθ + ⏐m⏐β cosθm). (20) 
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For m > 0 two cases are possible. In the first case the 
argument of the Bessel function remains positive for 
m < 2ωcosθ/Ωcosθm. In the second case for 

m > 2ωcosθ/Ωcosθm the argument becomes negative. 

Consequently, the Bessel functions are asymmetric with 
respect to the change in sign of the function order m in 
Eq. (19). This results in the increase of the spectral power 
density of high–frequency components. The last 
circumstance favours the conversion of laser radiation 
frequency into the UV and X–ray ranges. As this takes 
place, the spatiotemporal coherence conserves.  

By way of example, let us consider the possible 
increase of the laser radiation frequency by an order of 
magnitude due to reflection from the oscillating mirror. Let 
the oscillation frequency Ω be equal to the frequency 
ω = 3⋅1014 s–1 of laser radiation incident on the oscillating 
mirror. Oscillations at so high optical frequency can be 
excited by the second laser with the same characteristics. 
Laser beam is incident on a piezoelectric film transducer 
whose second surface is specular. We note that the excitation 
of hypersonic waves is not required, the oscillations of 
specular surface are sufficient. We are interested in the 
combination wave at the frequency ω–9 = ω + 9ω = 10ω. For 

simplicity, we restrict our consideration to the case of 
normal incidence θ = 0. Then θm = 0 for any m. From tables 

published in Ref. 25 we find the maximum of the ninth 
order Bessel function. It is equal to 0.31 when the argument 
varies in the range 10.6–10.8, i.e., Γ9(10.8) = 0.31.  

According to Eq. (20) we have  
 

Γ
–9

 (κD + κ(m)D) =(–1)9 Γ
9
(2ωD/c + 9ΩD/c) =– Γ

9
(11ωD/c). 

 
Substituting in this relation c = 3⋅1010 cm/s and 

ω = 3⋅1014 s–1, we obtain Γ
9
(11ω D/c) = Γ

9
(1.1⋅105D) = 0.31. 

This is possible only when 1.1⋅105D = 10.8. That is, we 
need the amplitude of displacement being equal to 9.8⋅10–

5 cm. We note that in practice the higher is the oscillations 
frequency, the more difficult is to obtain sufficiently large 
amplitude of displacement. Thus it turns out that the 
frequencies ω and Ω must be best decreased while the ratio 
of the frequencies must be increased resulting in sufficiently 
intense combination wave at the frequency mω. For 
instance,26 the Bessel function Γ16(18) g 0.26 differs 

slightly in magnitude from Γ9(10.8) g 0.31, that is, the 

maxima of the Bessel functions vary slowly with increase of 
their order. We find for this case using Eq. (19)  

 
Γ
–16

(2ω D/c + 16Ω D/c) = Γ
16
[D(2ω + 16ω)/c] = 

=
 
Γ
16
(18ω D/c) = 0.26 = Γ

16
(18) ,  

 
where ω

–16
 = ω + 16ω = 17ω, from which we find 

D = c/ω = 10–4 cm. 
It is seen from the comparison of these two numerical 

examples that in the first case the amplitude of 
displacement D = 9.8⋅10–5 cm is required for tenfold 
increase of the frequency. In the second case the small 
increase of the amplitude of displacement up to 10–4 cm is 
required for 17–fold increase of the frequency. Using 
solutions (15) and (16), we determine the efficiency of wave 
conversion due to reflection from the oscillating interface in 
terms of the ratio of the intensities of combination waves to 
the intensity of the incident wave 

 

Rm ≡ 
Im
I  = [ ]ω – mΩ

ω  Γm(κz D + κ z
(m)D)

2

 = 

 

= ( )1
 
–

 
m 

Ω
ω

2

 Γ2
m(κz D + κ z

(m)D) ,  

 
where I is the intensity of the incident wave and Im is the 

intensity of the combination wave of the mth order. We 
have R

–9
 = 100⋅0.312 = 9.61 and R

–16
 = (1 + 16)2

⋅0.262 = 41 

for the aforementioned examples, i.e., the intensities of 
these combination waves exceed the intensity of the incident 
wave. We note that increase of the intensity was also 
observed in the case of reflection of electromagnetic waves 
from the mirror moving with constant velocity in the 
direction counter to the direction of wave propagation.1 
However, as was noted in Introduction, this gain was 
insignificant due to small velocities. Obviously, the increase 
of wave intensity in the case of reflection from the moving 
mirror is caused by the work done by the mirror on the 

wave under radiation pressure.
21

 
Let us make several comments about the relation 

between the perfection of the mirror surface and ultrahigh 
frequency. As is well known, the principal difficulties 
emerge as the wavelength decreases when we try to 
manufacture the perfect mirror surface intended for 
reflection of such waves. However, in the given case such a 
problem does not emerge since the real Doppler shift of the 
frequency is small: Δω = ωΩD/c ∼ ω. 

The foregoing examples are of theoretical interest 
rather than of practical one, since the amplitude of the 
velocity close to the speed of light is required to realize 
them. However the high efficiency of wave conversion due 
to the coefficient (1 – mΩ/ω)2 provides a means for 
obtaining the waves at ultrahigh frequencies for m = 102, 
103, 104, etc, when the amplitude is not large (Ω D n c). 
But the effective speed mΩ D can be always increased due 
to the factor m in Eq. (19) so that it becomes close in value 
to the speed of light and can even exceed it. Taking into 
account that the mth order Bessel function reaches 
extremum when its argument becomes comparable to its 
order m, we find using Eq. (19) 

 

⏐m⏐ g 
2ωD

c – ΩD
 . (21) 

 
Since the argument of the Bessel function given by Eq. (19) 
depends on its order, in the general case we must use the 
addition theorem for Eq. (19) in the form 
 

Γn(2 α cosθ – n β cosθn) = ∑
m=–∞

∞
 
  Γm(2 α cosθ) × 

 
×Γn–m(n β cosθn) (–1)n–m . (22) 

 
After this the principal terms of asymptotic formulas25 can 
be used as n → ∞ when the other variables are fixed 
 

Γn(n sechγ) ∼ 
exp[n(tanhγ – γ)]

2πntanηγ
 , Γn(γ) ∼ 

1

2πn
 ( )eγ

2n
n
 . 

 
For the fixed order of the function as 2αcosθ → ∞ the 
asymptote is valid  
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Γm(2 α cosθ) ∼ 
2

2παcosθ cos( )2 α cosθ – 
1
2 mπ – 

1
4 π . (23) 

 
For small arguments ⏐2αcosθ – nβcosθn⏐ we have 

 

Γn(2 α cosθ – n β cosθn) ≈ 
(2 α cosθ – n β cosθn)

n

2n n!
 . (24) 

 
This approximation is valid only for sufficiently small order n. 

One important comment about the interpretation of 
the obtained solution and correct choice of the boundary 
conditions at infinity should be made. As is seen from 
obtained solution (15), the value of the summation index 
m ≥ ω/Ω can be always found, starting from which the 
combination wave frequencies become "negative". 
Obviously, in these cases every expression for combination 
waves in the form of Eq. (17) must be represented in the 
form 

 

E
–(n) = 

+einϕ

2  Γn
*(κz D + κ z

(n)D) 
ω–n

ω  A
–

* × 

 

× exp
⎣
⎡

⎦
⎤iω–n( )x

c sinθn – 
z
c cosθn – t  + c.c. , 

 
where the complex conjugate terms are transformed. The 
kinematics of propagation of these waves corresponds to the 
effective reversion of time. In particular, it is not difficult 
to find the conditions of wavefront conjugation and 
reversion of the dynamics of dispersive coherent pulse. 

 
5. CONCLUSION 

 
The physical pattern of reflection resembles Raman 

scattering described phenomenologically by consideration of 
the nonlinear terms. In our case the frequency change is 
caused by the Doppler shift, whereas the physical mechanism 
of nonlinear interaction remains unknown. It should be noted 
that nonlinear interactions of waves manifest itself most 
effectively in piezoelectrics LiNbO3, in which the Doppler 

mechanism of nonlinearity contributes undoubtedly. 
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