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The problem of formation of a light beam wave front with flexible or segmented 
mirrors is considered. A detailed analysis of the influence of the beam intensity profile 
as well as of the ratio of an actuator range to a beam radius on the quality of the 
beam focusing is given. Some feasible approaches to modeling of the focusing 
procedure when using a segmented mirror are discussed. Certain differences between 
the results obtained using the present field approximation and those obtained using 
numerical simulations on inversion of the wave front in the case of four–wave 
interaction under conditions of strong energy exchange between the waves and their 
self–action are pointed out. 

 
INTRODUCTION 

 
One of the important problems of compensation for 

amplitude–phase distortions of optical radiation is the 
formation of the required wave front surfaces, e.g., using 
flexible and segmented mirrors, liquid crystals, and the 
methods of nonlinear optics. Different questions concerned 
with this problem are discussed in Refs. 1–37. In this paper 
we give a brief review of our previous studies on the 
selection of mirror geometry (the number of its degrees of 
freedom and arrangement of actuators), the possibility of 
parallel control of different channels of the mirror 
deformation, the simulation of phase conjugation (PC), and 
the like. 

 

FLEXIBLE MIRRORS 
 

In this section we discuss the problems of formation of 
the required surface on a flexible mirror at the expense of 
disturbances applied to some points (actuators) for focusing 
the light beam. In so doing two limiting cases must be 
distinguished for the relation between the radius aac of 

action of an individual actuator and the radius a of the 
beam: (1) aac . a and (2) aac n a. 

It should be noted that in the linear medium16 for the 
small number of actuators and under condition aac . a a 

high–quality beam can be focused with a flexible mirror 
when its response function is close to the Gaussian or 
involves a quadratic segment of deformation disturbance. By 
arranging the other actuators beyond the region occupied 
with the light beam or by rigidly fixing the edge of the 
mirror it is easy to realize a parabolic profile of the mirror. 
This conclusion is also drawn from formula (5) (Ref. 20) for 
the optimal quantity θ1 of deformation of a flexible mirror 

with the Gaussian response function Φ = exp(–(x2 + 
+ y2)/a 2

ac) during the Gaussian beam focusing 
 

θ1 a
2
ac = (1 + a 2

ac) θ , (1) 
 

where θ is the dimensionless parameter specifying the beam 
focusing (S = θ(x2 + y2) is the wave front; x and y are the 
transverse coordinates normalized to a) and aac is the 

dimensionless parameter equal to the ratio of the effective 
range of an individual actuator to the beam radius. Hence,  

for aac . 1 the curvature of the parabolic front in the range 

of the beam propagation coincides with the mirror 
curvature. For the beam self–action, highly efficient control 
of such a mirror (as for a perfect corrector) is attained when 
the inequality z2(1 + α) n 1 holds (z and α are the 
normalized longitudinal coordinate and the nonlinearity 
parameter, respectively37), i.e., basically, for phase 
distortions. The numerical simulation performed by Kanev 
and Chesnokov16 supports these conclusions. 

If the effective range of an individual actuator is 
comparable to or smaller than the beam radius (this is the 
case that is frequently encountered in the problems of light 
energy transport1–3), then optimization of the actuators 
arrangement and of their number acquired the greater 
importance than that for the above–discussed case aac . 1. 

This problem is examined in our papers.20,21,27,35,36–39 Some 

of those conclusions are reproduced in this paper. 
First of all we consider the efficiency of a profiled 

beam focusing with a flexible mirror having an actuator at 
its center and rigidly fixed around its circles.35 The form of 
the response function of actuator is Gaussian or bell–shaped 
 

Φ = ch–2 (x/ aac, y/aac) . (2) 
 

Propagation of the light beam is described by a quasioptical 
equation 
 

∂A/∂z + i Δ
⊥
A + i α εnl A = 0 (3) 

 

with the boundary condition 
 

A⏐z=0 = 
0.5 exp (– 2xm – 2ym – i S(x, y))

⌡⌠
 
 ⌡⌠

 
 exp (– 4xm – 4ym) dx dy

 , 

S = θ1 Φ, (4) 

 

where m is the parameter equal to 2, 4, 6, 8, and 10 which 
indicates that the beam profile is close to uniform 
distribution. In the numerical experiments on focusing in a 
medium with the Kerr nonlinearity εnl = α⏐A⏐2 and in a 

moving medium with a thermal mechanism of nonlinearity 

εnl = α ⌡⌠ ⏐A⏐2 dξ the parameter ⏐α⏐ was equal to 20, the 
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radius of the receiving aperture Ra = 0.25 (the aperture 

function within Ra equals 1), and the receiver was placed in 

the cross section z = 0.1 (0.2 κa2). The quality of 
compensation for the beam defocusing was estimated based on 
a portion of its power jr received by the aperture. Figures 1 

and 2 depict the calculational results obtained for the mirrors 
with the Gaussian and bell–shaped functions as dependences 
of the value of jr on the relation between the effective range of 

the actuator and the initial radius of the beam. 
Let us first consider the beam focusing in a linear 

medium. It is easy to draw some conclusions by analyzing 
Fig. 1. First, there is an optimal value (aac)opt. In the 

situation under study it equals 0.72 (for a Gaussian beam) 
and 0.8 (for a hyper–Gaussian beam with m = 6 and 10). It 
should be noted that when aac exceeds (aac)opt the quality of 

focusing decreases slower than when aac decreases. Second, 

there is an optimal profile of the beam in the class of 
distributions (4). Thus in going from a Gaussian to hyper–
Gaussian profile of the beam with m = 6 and depending on 
aac, it is possible to increase a power concentration at the 

receiver by a factor of 1.3–1.5. Third, near the optimal 
focusing the dependence of the received power jr on the 

mirror deformation for a hyper–Gaussian beam is smoother 
than that for a Gaussian beam. The detuning of focusing 
from (θ1)opt for the quantity 0.3–0.4 gives a few percent 

decrease in power concentration. On the one hand, this 
makes the requirements for a focusing accuracy weaker and, on 
the other hand, can slow down the convergence of the 
iteration process. It should be noted that in the considered 
case the beam focusing with a flexible mirror with a single 
actuator positioned at its center increases the power 
concentration at the receiver by a factor of 1.4–2.2 compared 
with the value obtained using a collimated Gaussian beam. 
The beam profiling makes it possible to increase further the 
power concentration at the receiver by a factor of 1.7–2.9. 
However, the value of jr under the wave–front 

multidimensional control exceeds essentially jr at optimal θ1. 

Thus, even for (aac)opt the power concentration at the receiver 

obtained due to the beam focusing is 2.1 times lower than jr 

being reached under the multidimensional control. 
The foregoing conclusions are also valid for beam 

focusing in the Kerr medium. However, the nonlinearity of 
propagation produces some differences in the jr dependence on 

aac. In particular, there occurs a nonmonotonic dependence of 

the received power on aac. The quality of focusing of the 

Gaussian beams decreases approximately by a factor of 1.2–
1.4. As for the hyper–Gaussian beams, the value of jr differs 

slightly from jr being reached in the linear medium using a 

mirror with the Gaussian response, and when m = 10 in the 
Kerr medium the power concentration becomes even higher. 
The reason is that the beam first propagates through a part of 
the path with a uniform profile39,40 and then it is transformed 
to a Gaussian one. Due to this fact, first, the nonlinear 
distortion of the wave–front decreases and, second, it 
apparently has no time to be transformed into an amplitude 
one. Since the mirror response profile and the beam phase 
distortion are similar the quality of compensation becomes 
higher. Therefore it is appropriate to transfer to the profiled 
beams: along the certain paths the nonlinearity of beam 
propagation does not result worsening the quality of focusing. 
The path can be prolonged due to the control over the beam 
radius. It should be noted that a multidimensional control of 
the beam phase leads to the four–fold increase of the power 
at the receiver. 

 

 
 

FIG. 1. Power at the receiver vs the ratio of the effective 
range of an individual actuator to the Gaussian (solid 
curve), hyper–Gaussian with m = 6 (dashed curve) and 
m = 10 (dot–dashed curve) beams during focusing with a 
mirror with a Gaussian function response in linear (a), Kerr 
(b), and moving with a thermal mechanism of nonlinearity 
(c) media. Dots stand for the values of jr corresponding to 

the beam collimated upon entering the medium and crosses 
symbolize the values jr reached under multidimensional 

control without limiting the number of the mirror degrees of 
freedom. Figures denote the parameter m. 
 

When the beam is focused in a moving medium (see 
Fig. 1c) the power concentration at the receiver increases 
with increase of aac (only for a hyper–Gaussian beam with 

m = 6 the quantity jr decreases when aac ≥ 0.75). 
The transition to profiled beams is much more efficient 

than in the previous cases and the result is a 1.3–1.8 fold 
increase of the power. It is worth noting that the  
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multidimensional control leads to a two–fold increase of the 
received power. In addition, the same value of jr is reached for 

a Gaussian beam and a hyper–Gaussian beam with m = 6. 
This is accounted for by the fact that during the severe 
focusing of optical radiation strong self–deflection of a light 
beam occurs which is caused by transverse motion of the 
medium and its center goes beyond the receiving aperture. An 
important point is that the dependence of the received power 
on the relation between the beam radius and the effective 
range of the actuator is determined by the size of the receiving 
aperture. As an illustration of this statement Fig. 1a depicts a 
plot of jr vs aac for Ra = 0.5 (heavy curve at the top). The 

figure shows a monotonic increase of power concentration at 
the receiver with increase of aac. 

 

 
 

FIG. 2. Dependences are the same as in Fig. 1, but when 
the beam focusing is performing by a mirror with a bell–
shaped response function in linear (solid curves) and 
moving with a thermal mechanism of nonlinearity (dot–
dashed curve) media. Figures near the curves denote the 
values of the parameter m. 
 

A comparison of the values of jr during the beam 

focusing by means of the mirror with the Gaussian and 
bell–shaped response function (Fig. 2) indicates that in the 
latter case the power concentration at the receiver is 1.12–2 
times lower. However for small aac the difference in the 

focusing efficiencies decreases and the transition to profiled 
beams (as is noted above) enables one to increase jr. 

Thus to improve the quality of focusing with small aac 

it is necessary to increase the number of actuators. In this 
case, the problem of their arrangement arises. To achieve 
high quality of the appropriate surface of the mirror we 
must increase the number of its degrees of freedom while to 
increase the high–speed of the system, which also affects 
the quality of focusing under the dynamic control, it is 
necessary to minimize the number of actuators. 

The control depends also on how much the ranges of 
individual actuators are overlapped. If several actuators act 
on each part of the mirror, then the overlapping of the 
ranges of actuators will be strong and the breakdown of the 
iteration convergence in one channel unavoidably leads to 
the same effect in the other channels. In the case of weak 
overlapping, it is possible to organize the parallel control of 
all the actuators. Therefore there exists a strategy for 
optimal arrangement of actuators. 

As is known, in a linear medium the actuators are 
arranged so that their groups can form the mirror surface 
described with Zernike polynomials. This strategy can be 
inefficient for nonlinear propagation. 

Let us analyze some ways for arranging the 
actuators.20

 Figure 3 shows the fragments of mirrors. For 
the variant shown in Fig. 3a a total number of actuators 

in a square whose side is equal to the beamwidth is Nac = 4ar–

d(ar–d + 1) + 1, and there is approximately four–fold 

overlapping of actuators. Here ar–d is the ratio of the beam 

radius a to the distance at which the actuators are positioned 
from each other. When they are arranged around the circles of 
radii κar–d (κ = 0, 1,...,) at a distance of ar–d from each other 

their total number is Nac = 3ar–d(ar–d + 1) + 1. About three 

actuators act on each element of the mirror surface. It is 
possible to decrease Nac if the actuators will be positioned at a 

distance of 2ar–d between the centers and one more actuator – 

at the center of each square 2ar–d on a side. In this case 

Nac = 2a 2
r–d – 2ar–d + 1 and the overlapping of the ranges of 

individual actuators is about 73% (less than two actuators per 
an element of the surface). Finally, the actuators can be 
arranged over "honeycombs" inscribed into a circle of radius 
ar–d. In this case Nac = 1.24a 2

r–d and the overlapping is about 

35%. If the radius of a circle is 2ar–d and one more actuator is 

added at the center, then Nac = 0.94 a 2
r–d. Hence, with the 

same ar–d due to the optimal arrangement of actuators it is 

possible to substantially decrease (by a factor of 2–4) their 
number that is very important for large ar–d since namely this 

case is of interest in practice (see Fig. 4). 
 

 
 

FIG. 3. Different strategies of the actuator arrangement: 
a) at vertices of a square of a side ar–d, b) around the 

circles of radii κar–d, c) at vertices and center of a square 

of a side 2ar–d, d) over honeycombs inscribed within the 

circle of radius 2ar–d, and e) at the center of the circle. 
 

 
 

FIG. 4. Total number of actuators vs the parameter ar–d 

at different approaches to actuator arrangement. Figures 
at the curves are the same as in Fig. 3. 
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Consider now the quality of compensation for nonlinear 
distortions of the Gaussian fG = exp(–(x2 + y2)/2) or tubular 

ft = (1 2)(x2 + y2)fG beams passed through a thin defocusing 

layer21 which is estimated based on the functional 
 

j = ⌡⌠
 
 ⌡⌠

 
 (Snl – Sy)2 dx dy, (5) 

 

where Snl is the additional phase difference caused by 

optical beam propagation through a nonlinear layer and Sy 

is the wave front formed with an adaptive mirror. The 
numerical simulation carried out for compensating for the 
divergence contributed by the Kerr layer of the medium or 
layer of the moving medium with a thermal mechanism of 
nonlinearity, when the actuator arrangement is optimal, 
shows that the quality of correction of a beam distortion 
depends on aac, its profile, and the type of nonlinearity as 

in the optically dense medium. Let us note that the number 
of actuators increases in the field of the maximum beam 
intensity. As an example, the table21 shows the results of 
optimization of actuator arrangement and deformation of the 
mirror with the Gaussian response function near these 
actuators.  
 

BEAM FOCUSING WITH A SEGMENTED MIRROR 
 
The problems of the beam focusing with a segmented 

mirror are the least understood by now. In particular, 
Refs. 4 and 41 and our Refs. 20, 22, and 23 are devoted to 
this problem. Some of the results are discussed in this 
section. The laboratory simulation of beam focusing with a 
segmented mirror was carried out in Ref. 4. 

The light beam propagation is described using Eq. (3) 
with a boundary condition 

 

À(0, x, y) = 
–
f (x, y) exp (i S( x, y)) , (6) 

 

where S is the wave front and 
–
f (x, y) is the cross–aperture 

distribution of optical radiation after its reflection from a 
segmented mirror 
 

–
f (x, y) = f(x, y)∑

pq=1

M0
 
 Rpq(x, y) . (7) 

 

Here f(x, y) is the initial beam profile, Rpq is the 

reflectance of an individual plate, and M0 is the number of 

segments along a single coordinate. For simplicity, we 
assume that the number of segments along the x and y axes 
is the same. In this case the segmented mirror introduces the 
phase shift 
 

Sy (x, y) = ∑
pq=1

M0
 
 [ϕxp(x – xp) + ϕyp(y – yq) + θpq] Rpq , (8) 

 

into the beam wave front. Here θpq is the longitudinal shift 

of the segment (p, q) while ϕxp and ϕyq are its slope angles 

along the x and y axes, and xp and yq are the coordinates of 

the segment center. 
It should be noted that the beam distribution over the 

amplitude may have narrow dips in the intensity related to 
the existence of the gaps between individual beamsplitters 
as well as the gaps formed during their rotation relative to 
each other. The dips involve difficulties in numerical  

simulation since near the segment boundary the beam 
complex amplitude changes more rapidly than it does within 
the limits of beamsplitters. The situation becomes more 
complicated because the width of the dips and their location 
vary with time during the adaptive control of the segmented 
mirror. Therefore, at present the efficient numerical 
methods should be developed for modeling such problems 
(the efficient methods are those whose calculation bulk and 
time are comparable to the methods for calculating of self–
action of the beams without narrow dips in the intensity). 
One of them is described and tested in Ref. 23. 

The method of assigning the function Rpq is of 

importance in simulation. In practice, the reflectance of an 
individual segment is 
 

Rpq = 
⎩
⎨
⎧1 , ⏐x – xp⏐ < Ls cos ϕxp , ⏐y – yq⏐ < Ls cos ϕyq ,

0, in other cases,
 (9) 

 

where 2Ls is the segment size. For simplicity, the segments 

are considered to be of the form of square. It is expedient to 
use the function Rpq in analytical investigations when the 

initial expressions for estimating the quality of formation of 
the appropriate surface represent integral relations. The 
smooth functions and those close to Eq. (9) should be 
employed in numerical experiments.23 

The next step involves the selection of the appropriate 
estimate of quality of the light beam focusing with a 
segmented mirror. The optimal tilts and shifts can be 
calculated using one of the following two methods.20,23 

The first method implies the calculation (in particular, 
using a gradient method) of the optimal wave front Sopt at 

which the extremum of focusing criterion (e.g., the focusing of 
the beam power received at a target) is attained, and then the 
segments are arranged so that the functional can be minimized 
 

js = ⌡⌠
 
 ⌡⌠

 
 (Sopt – Sy)

2 κ(x, y) dx dy, (10) 

 

where κ(x, y) characterizes the transmitting aperture. It 
should be noted that for small deviations of Sy from Sopt the 

functional in Eq. (10) is related to the value of peak intensity 
along the beam axis by the Strehl number and is widely used 
for calculating the effect of errors in formation of the 
appropriate surfaces with the mirror as well as of 
uncompensated random aberrations and errors in 
implementation of optimal perturbations of actuators in 
flexible mirrors. 

The second method includes direct optimization of tilts 
and shifts of segments to reach the extremal value of the 
functional chosen for estimating the beam power 
concentration at the receiver. In particular, the gradient 
method of optimization makes it possible to organize 
parallel calculations of functional derivatives over shifts of 
the segments. It is significant that in the method based on 
minimizing the functional in Eq. (10) the segment 
parameters are controlled independently,20,23 while in the 
second method based on optimization of the mirror profile 
all the control channels are interconnected through a 
complex amplitude of the conjugated problem. 

The quality of forming the appropriate surface with a 
segmented mirror can be estimated based on the functional 
 

jR = ⌡⌠
 
 ⌡⌠

 
 κ(x, y) ⏐Sopt – Sy⏐

 dx dy (11) 

 

which characterizes a uniform deflection of the mirror 
profile from Sopt. Comparison of efficiencies of Eqs. (10)  
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and (11) shows22 that the functional jR is more useful for 

estimation of the quality of formation. 
 

PHASE CONJUGATION (PC) FOR FOUR–WAVE 
INTERACTION (FWI) 

 
As is well known, the beam formation with the wave 

front conjugated to the beam reflected from the receiver can 
be realized based on such a phenomena as the PC, in 
particular, the FWI which is the principal approach for 
attaining the phase conjugation in the IR range. In 
Refs. 30–33 we analyzed the effect of different factors 
(inequality of pumping amplitudes, relation between the 
radii of interacting beams, noncollinearity of their 
propagation, and so on) on the quality and efficiency of 
reference wave inversion with regard for (in contrast to the 
majority of other papers) depletion of pumping waves. Such 
an analysis can be carried out only by numerical simulation. 
It is impossible to give a complete discussion for reasons of 
space. Therefore I take up only two cases here. First, the 
approximation of the prescribed field widely used in the PC 
problems gives incorrect dependences of the quality of 
inversion, e.g., on the length of a medium in the presence of 
the wave self–action. Second, when the mutual effect of the 
waves is taken into account the noncollinearity of 
propagation manifests itself quite differently than in a 
linear medium. This also leads to incorrect results when 
approximation of the prescribed field is used. In closing the 
discussion it should be noted that during the control of the 
parameters of reference waves it is possible to achieve the 
90% reconstruction of the wave front of a reference beam. 

 
TABLE I. Optimization of actuator arrangement (in the 
first quadrant) and deformation of a mirror during 
compensation for the Gaussian beam divergence 
contributed by the Kerr layer αz = 1 when aac = 0.1. 

Represented in the last column is the value of criterion 
(5). 
 

 
N 

x1 

y1 

θ1 

x2 

y2 

θ2 

x3 

y3 

θ3 

x4 

y4 

θ4 

x5 

y5 

θ5 

x6 

y6 

θ6 

x7 

y7 

θ7 

 
J 

 
1 

0.1673 
0.1673 
1.81 

       
0.3395

 
2 

0.1675 
0.1675 
1.80 

1.7797 
1.6703 
0.07 

      
0.3194

 
3 

0.1329 
0.1321 
1.74 

0.4031 
0.1681 
1.52 

0.1681 
0.4022 
1.56 

     
0.2634

 
4 

0.1328 
0.1327 
1.73 

0.4017 
0.1316 
1.54 

0.1317 
0.4016 
1.54 

0.4008 
0.4005 
1.41 

    
0.2361

 
5 

0.1328 
0.1326 
1.72 

0.4015 
0.1339 
1.52 

0.1339 
0.4016 
1.52 

1.3791 
1.4677 
0.06 

0.4026 
0.4027 
1.30 

   
0.2262

 
6 

0.1087 
0.1088 
1.61 

0.3654 
0.1310 
1.51 

0.1309 
0.3598 
1.51 

1.3770 
1.3777 
0.02 

0.2450 
0.5411 
1.31 

0.5430 
0.2458 
1.31 

  
0.2018

 
7 

0.1072 
0.1024 
1.62 

0.3426 
0.1316 
1.49 

0.1327 
0.3547 
1.50 

1.397 
1.476 
0.03 

0.4061 
0.3972 
1.32 

0.6090 
0.1699 
1.13 

0.1811
0.610
1.14 

 
01887
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