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A technique is proposed for reconstructing spatial distribution of the extinction 
coefficient of an inhomogeneous coursely disperse medium from its optical transfer 
function. The technique is based on solving the radiation transfer equation in the small 
angle approach. Approximate expressions are derived for estimating the distance to a 
scattering layer and its thickness. A regularization algorithm for solving the inverse 
problems is described and its precision characteristics are studied in a numerical 
experiment. 

 
INTRODUCTION 

 

The optical methods are effective for studying a 
structure of disperse media including an aerosol 
component of the atmosphere. Of the available methods 
for optical diagnostics of aerosol media, most of them are 
based on the phenomenon of single light scattering and 
due to this fact they are confined to the region of a 
weakly turbid atmosphere. With increase of the optical 
density of a disperse medium the effects of multiple light 
scattering come into play. An account of them in 
diagnostics is a problem of great concern.  

The methods of lidar sounding1,2 as well as the 
methods of transmission tomography3,4 of the atmosphere 
can be used for studying a spatial structure of the 
atmospheric aerosol component. In the lidar methods the 
effect of multiple scattering in the measured lidar returns 
can be taken into account using its numerical estimate 
based on a solution of the radiation transfer equation 
(RTE) for different geometries of the experiment and 
optical models of the atmosphere with subsequent 
corrections of the lidar equation.5,6

 In so doing only a 
portion of the lidar return caused by single scattering, 
whose contribution decreases with increase of turbidity of 
a medium, is actually used for the interpretation. The 
difference between the total and singly scattered signals is 
represented as the disturbance to be considered.  

In the method of diagnostics of optically dense 
disperse media7 the multiply scattered radiation is treated 
not as noise but as an informative component of the 
measured return signal used for the interpretation. The 
method7 is based on the RTE solution in small–angle 
approximation which enables one to determine the 
analytical relationship between a disperse composition of 
the medium and angular distribution of a multiply 
scattered plane wave.  

In this paper a small–angle approximation of the 
RTE is analyzed as applied to the problem of 
reconstructing a spatial structure of the strongly turbid 
aerosol atmosphere from the data on its optical transfer 
function (OTF). The OTF of the medium is a Fourier 
image of the other important feature of the medium, i.e., 
the point spread function (PSF), and is of first importance 
in the image transfer in scattering media. The problems of 
theoretical and experimental determination of the OTF  

(PSF) have been considered in detail, e.g., in Refs. 8 and 9. 
The OTF of a medium depends on both the scattering 
phase function characterizing local properties of the 
scattering volume and spatial distribution of scattering 
and extinction coefficients over the direction of radiation 
propagation. The study of possibilities for reconstruction 
of the extinction coefficient profile of a medium from the 
data on its OTF has received primary attention in this 
paper. It should also be noted that the information about 
the scattering phase function described by the OTF makes 
it possible to consider the other inverse problem in 
reconstructing the disperse composition of the medium. In 
contrast to the method7 based on measurements of an 
angular structure of multiply scattered radiation, in the 
latter case the initial information for solving the inverse 
problem can be extracted by measuring the spatial 
distribution of illumination in the cross section of a 
narrow light beam propagated through the scattering 
medium. This problem is of particular importance and will 
be treated in the other paper.  

1. Initial equations. Mathematical statement of the 
inverse problem. The OTF of the medium F(ν, z) can be 
derived from the general solution of the RTE in small–
angle approximation within a frequency range in the 
form10 
 

F(ν, z) = exp {–τ(z) + g(ν)} , (1) 

where  

τ(z) = ⌡⌠
0

z

 
 
ε(s) ds , (2) 

 

g(ν) = ⌡⌠
0

z
 
 
σ(z – s) x(ν s) ds, (3) 

 

where ν is the spatial frequency, σ and ε are the scattering 
and extinction coefficients, τ is the optical depth of the 
medium in the interval [0, z], and x(p) is the Fourier 
transform of a small–angle scattering phase function. The 
function x(p) in the Fraunhofer diffraction approximation, 
with an accuracy of the scale, coincides with a medium–
sized autocorrelation function of a particle shadow ϕ(ρ) 
related to the area of the cross section of particles:  
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x(p) = ϕ(p/κ) and κ = 2π/λ, where λ is the wavelength. 
For a polydisperse ensemble of spherical scatterers the 
autocorrelation function ϕ(ρ) can be expressed as an 
integral7  
 

ϕ(ρ) = ⌡⌠
ρ/2

R

 
 
Q (ρ, r) f(r) dr, (4) 

 

where f(r) = s(r)/S, s(r) = πr2n(r), n(r) is the particle 

size distribution, S = 
⌡⌠
0

R

s(r) dr is the total geometric cross 

section of particles in the unit volume of the scattering 
medium; Q(ρ, r) = G(ρ/2r) is the autocorrelation 
function of a shadow of a single r–radius particle related 
to the area of its cross section  
 

G(t) = 
⎩
⎨
⎧

 

2π–1[arccos t – t 1 – t2 ] , t ≤ 1,
0 ,  t > 1 .

 (5) 

 

Relations (1)–(4) are valid under conditions11 
κr⏐m – 1⏐ . 1 (m is the complex refractive index of 
particles of a medium) and τ < 8. These limitations are 
related to the total conditions of applicability of small–
angle approximation of the RTE (Refs. 8 and 12) and 
special representation of Fourier transform of the 
scattering phase function in terms of Eq. (4).  

Under the aforementioned assumptions the relations 
ε = 2S and σ = S are valid and the function g(ν) from 
Eq. (3), and, hence, the OTF of the medium F(ν) are 
directly expressed in terms of microstructure parameters of 
the medium by the integral transformation  
 

g(ν) = 
1
2 ⌡⌠

0

z

 
 ⌡⌠

0

R

 
 
G(ν s/2 κ r) ε(z – s) f(r) dr ds . (6) 

 

Relation (6) can be treated as an integral equation 
for determining the normalized particle–size spectrum f(r) 
(with the known profile ε(s)) or for reconstructing the 
extinction coefficient profile ε(s) with an a priori 
specified form of the particle size distribution. In what 
follows we will consider the latter problem as represented 
in a standard form of the first–type integral equation  
 

⌡⌠
0

z

 
 
K(ν, s) ε~(s) ds = g(ν) (7) 

 

with respect to the function ε~(s) = ε(z – s) with the 
kernel K(ν, s) = ϕ(ν s/κ)/2. The initial information in 
the case of inversion of integral equation (7) is prescribed 
by the function g(ν) which is unambiguously expressed in 
terms of the OTF of a medium 
 

g(ν) = ln F(ν) + τ . (8) 
 

Taking into account properties of the function G(t) it is 
possible to show that ϕ(0) = 1 and F(0) = exp(–τ/2) and 
the right side of integral equation (7) is represented in the 
final form  
 

g(ν) = ln (F(ν)/F 
2(0)) . (9) 

 

2. Structure analysis of the inverse problem. Let us 
consider some analytical properties of the kernel K(ν, s) 
of integral equation (7) which determine principal  

peculiarities of the g(ν) function behavior (and hence the 
behavior of the OTF of a medium F(v)) and specify the 
information content of the OTF measurements with 
respect to spatial distribution of the extinction coefficient 
ε(s). Reasoning from the properties of the functions G(t) 
and f(r) it is easy to show that the kernel K(ν, s) is a 
continuous monotonically descreasing convex downwards 
function over each of arguments ν and s with the domain 
0 ≤ s ≤ z, 0 ≤ ν ≤ ∞ and the variability region 
0 ≤ K(⋅) ≤ 0.5. Let us determine the value of the 
frequency ν

0 
= 2κR/z. Then with ν ≥ ν

0
 the kernel 

vanishes K(ν, s) = 0 for all the values of s from the 
interval [s

1
, z], where s

1 
= z ν

0
/ν. Hence it follows that 

with ν ≥ ν
0
 the upper integration limit in Eq. (7) is equal 

to s
1
, i.e., it is a function of the frequency ν. Therefore for 

the values of ν ≥ ν
0
 the function g(ν) does not contain any 

information about distribution of ε~(s) in the interval 

[s
1
, z]. Since ε~(s) = ε(z – s), the value of g(ν) for ν ≥ ν

0
 

is determined by the values of the extinction coefficient 
ε(s) in the interval [z – s

1
, z], i.e., in the near zone to the 

receiver. Thus with the frequency increase starting from 
ν = ν

0
, the region of the scattering volume located at a 

distance larger than s
1
 from the receiver does not affect 

the OTF formation of a medium.  
It follows from the foregoing properties of the kernel 

K(ν, τ) and nonnegative value of the extinction coefficient 
ε(σ) that g(ν) is a nonnegative, monotonically decreasing 
convex downwards function for 0 ≤ ν ≤ ∞ 

 
0 ≤ g(ν) ≤ τ/2;  g′(ν) ≤ 0;  g′′(ν) ≥ 0.  

 

It should be noted that if the scattering layer is at a 
certain distance H from the receiver, then g(ν) = 0 for 
ν > ν

max
 = 2κR/H. By this is meant that the spectrum of 

frequencies, for which the OTF of the scattered 
component is nonzero, is limited. The spectrum width 
varies in direct proportion to the scattering particle size 
and in inverse proportion to the distance to the layer. This 
allows one, based on the spectrum width, to estimate the 
distance to the near boundary of the scattering layer. It is 
possible to obtain the estimate of the threshold frequency 
ν *
max

 from the condition g(ν *
max

) = σ, where σ is a 

sufficiently small positive value. In this case the 

corresponding estimate of the distance to the layer H* is 
overestimated. For example, for the Gaussian model of the 
layer with the optical thickness τ = 1, whose near 
boundary is at a 7.1 km distance from the receiver, the 

estimate of H* is 7.8 km for σ = 0.01.  
The important information about the layer structure 

is extracted from the analysis of the slope angle of the 
curve g(ν) at zero. Taking into account the expression for 
the derivative  
 

G′(t) = – (2/π) 1 – t 2,  
 
differentiating Eq. (7) over v, and assuming ν = 0 in the 
obtained expression, we have  
 

g′(0) = – 
A
κπ ⌡⌠

0

z

 
 
ε (z – s) s ds, (10) 

 

where the multiplier A is determined by a microstructure 
of a medium 
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À = ⌡⌠
0

R

 
 
r–1 f(r) dr (11) 

 

and can be expressed in terms of the integral 
microstructural parameters in the form  

A =
 
π
 
N r–

n/S, (12) 

where N is the particle number density and r–(n) is the 
particle radius avereged over the distribution n(r). In the 
particular case of a monodisperse medium with particles of 
the radius R we have A = 1/R.  

By representing the integral in Eq. (10) as  

T = ⌡⌠
0

z

 
 
ε(s) (z – s) ds, (13) 

 

it is possible to show that the relation  
 

L = T/τ (14) 
 

determines the distance from the receiver to "the center of 
gravity" of the scattering layer. Thus the layer position 
along the viewing line can be determined from the value 
of the derivative g′(ν) at zero.  

Under certain additionally simplifying assumptions 
formula (10) can serve as a basis for estimating the 
geometric depth of the scattering layer. Consider the 
scattering layer of the thickness D whose near boundary is 
at the distance H from the observer. By determining the 
efficient value of the extinction coefficient in the layer  
 

ε
0
 = ⌡⌠

H

H+D

 
 
ε (z – s) s ds

⎣
⎡

 

 
⌡⌠
H

H+D

 
 
s

⎦
⎤

 

 

ds
–1

, (15) 

we have 
 
 

T = ε
0 D(H + D/2). (16) 

 

By assuming approximately τ = ε
0
Δ, from Eq. (16) we can 

derive the formula for estimating the geometric thickness 
D of the scattering layer  
 

D = 2 (T/τ – H), (17) 
where  
 

T = κπ⏐g′(0)⏐/A . 
 

 
 

FIG. 1. Numerical simulation of direct problem solution 
(7) for a Gaussian model of the scattering layer with the 
parameters (zm, σ2) with mean values zm: 1) 2, 2) 5, and 

3) 8 km at σ = 0.5 km and τ = 1.  

 
FIG. 2. Numerical simulation of direct problem solution 
(7) for layers with different geometric thickness 
(thickness σ: 1) 0.1, 2) 0.5, and 3) 1.0 km at the fixed 
position of the center (zm 

= 5 km) and constant optical 

thickness (τ = 1).  
 

As an example Fig. 1 depicts a plot of calculational 
results of the function g(γ) vs the parameter γ = μ/2κR at 
three positions of the scattering layer simulated by the 
normal distribution with the mean values of zm and 

variance σ2. Curves 1–3 correspond to the values of the 
parameter zm 

= 2.5 and 8 km at σ = 0.5 km. As can be 

seen in Fig. 1 the slope of curves at zero is uniquely 
determined by the layer position. The effect of the layer 
thickness characterized by the variance σ2 at a fixed 
position of its center (z

m 
= 5 km) is shown in Fig. 2 in 

which curves 1–3 correspond to the values of the 
parameter σ = 0.1, 0.5, and 1.0 km. The results 
represented in Fig. 2 show that when the layer thickness 
changes by a factor of 10 the behavior of the function g(γ) 
in the low–frequency range (γ < 0.1 km–1) remains stable 
and the characteristic differences appear in the high 
frequency range (γ > 0.15 km–1).  

To estimate applicability of approximate 
formulas (14) and (17) the table lists the calculation 
results of the distance L to "the center of gravity" and the 
geometric thickness of the scattering layer D when 
simulating the extinction coefficient profile ε(s) along the 
path 0 ≤ s ≤ 10 km using a Gaussian curve with the 
parameters zm = 2.5 and 8 km, σ = 0.5 km and τ = 1.  

As the table shows the reconstructed geometric 
thickness of the scattering layer D fits "the 3σ rule" for 
the normal distribution.  

Thus the given examples show that the analysis of the 
structure of initial data (of the spectrum width and the 
derivative g′(ν) at zero) enables one to extract useful 
information about the properties of the unknown profile of 
the extinction coefficient ε(s) (in particular, the distance to 
the scattering layer, its optical and geometric thickness). The 
more detailed interpretation of the OTF measurements of a 
scattering medium is possible when the numerical methods 
for solving the inverse problems are used.  

3. The inversion algorithm and the numerical 
experiment. The regularizing algorithm developed based 
on the Tikhonov method13 was used for inverting integral 
equation (7). Preliminary algebraization of Eq. (7) was 
made using the method described in Ref. 14 and based on 
approximation of the extinction coefficient ε(s) with a 
linear spline by the formula  
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ε(s) = ∑
j=1

n
 εj Nj (s), (18) 

 

where the coefficients εj determine the values of the 

unknown function ε(s) at the nodes sj = Δ(j – 1)
 
assigned 

in the interval [0, z] with an even step Δ = z/(n – 1). 
The base functions N

j(s), j = 1, ..., n have the form  

 

Nj (s) = 

⎩
⎨
⎧

 

1 – 
⏐s – s

j⏐

Δ  , ⏐s – sj⏐ ≤ Δ ,

0 ,  ⏐s – sj⏐ > Δ .
  (19) 

 

By replacing the function ε(s) in Eq. (7) by its 
approximation using formula (18) for a discrete set of 
frequencies νi = ν

max
(i – 1)/(m – 1), i = 1, ..., m, we can 

obtain a system of linear algebraic equations with respect 
to the vector ε = (εn, ..., ε

2
,
 
ε
1
)  

 

A ε = g (20) 
 

with the matrix A = || aij|| whose elements are determined 

by the relations  

aij =⌡⌠
sj–1

sj+1

 
 
K(νi, s) Nj (s) ds, i, j = 1, ..., n; s

0 = 0; sn+1
 = z. (21) 

 

The regularized analog of system (20) has the form  
 

(AT E 
–2 A + α D) ε = AT E 

–2
 g ,      (22) 

 

where AT is the matrix transposed to the A matrix, 
E = diag(e

1
, ..., em), ej are the weighting factors 

determined by an error in the jth measurement; D is a 
tridiagonal smoothing matrix with the elements  
 

dij = 
1
Δ 
⎩⎪
⎨
⎪⎧

 

 2,   i = j,
–1, ⏐i – j⏐ = 1,
 0,  ⏐i – j⏐ > 1,  i, j = 1, ..., n.

 (23) 

 

The regularization parameter d was chosen based on 
the principle of minimum discrepancies15 which allows one 
to take into account an a priori information about the 
nonnegative unknown function ε(s) and the optical 
thickness (τ) in this problem. According to Ref. 15 the 
value of α

md
, with respect to criterion of minimum 

discrepancies, is determined from the condition of 
minimum of the functional  
 

F
md

 = || À ε
α
 – g || + || Àe

α 
(+) – g ||, (24) 

 

where  = P
1
P

2
ε
α
 and P

2
 is the operator of projection onto 

a set of nonnegative functions, and the nonlinear operator 
P

1
 is determined as follows  

P
1 

ε
α
 = τ ε

α ⎣
⎡

 

 
⌡⌠
0

z
 
 
ε
α
(s)

⎦
⎤

 

 

ds
–1

. (25) 

 

In numerical experiments the direct problem was 
solved in the interval 0 ≤ s ≤ 10 km in which the discrete 
counts of the extinction coefficient profile ε

j = ε(sj) with 

the step Δ = 0.25 km were assigned. The dimensionality m 
of the g vector in the right–hand side of Eq. (20) equals 41. 
We studied the efficiency of reconstruction of the profile  

ε(s) simulated by a Gaussian curve with the parameters 
(zm, σ2) as a function of the layer position with respect to 

the receiver. The accuracy of the inverse problem solution 
was found to increase when the receiver is approached to 
the layer. Thus, e.g., if the rms error in reconstruction of 
the profile ε(s) was 17% at z

m = 8 km, σ = 0.5 km, and 

the 5% relative error of input data, then for the layer with 
zm 

= 3 km the error in the solution increased up to 30%.  

Given in Fig. 3 is the instance of reconstructing a 
structure of a laminar layered scattering medium whose 
model is constructed by means of superposition of two 
normal distributions with the parameters z

m1
 = 7.5, 

zm2
 = 9.5 km, and σ = 0.3 km. In this example the 

solution vector dimensionality n = 15. The relative error 
in the input data is 10%. The ordinate axis in Fig. 3 is 
directed from the receiver to the layer and the origin of 
coordinates coincides with its nearest boundary. The 
solution of the inverse problem given in Fig. 3 was 
obtained taking into account a positive sign of ε

α
 and the 

known optical thickness τ for an optimal value of the 
regularization parameter α. The rms error of 
reconstruction was 10.4%. The use of the minimum 
discrepancy criterion for choosing the regularization 
parameter results in the reconstruction error increase 
within 5%. It should be noted that for the solution 
obtained directly by inverting Eq. (22) (without taking 
into account a positive sign and renormalization to the 
known optical thickness) the error was larger than 20%.  
 

 
 

FIG. 3 Example of reconstructing a two–layer model of 
the extinction profile ε(s) in the numerical experiment: 
1) model, 2) solution of the inverse problem with a 10% 
error in the initial data and optimal value of the 
regularization parameter.  

 
CONCLUSION 

 
Thus in this paper we consider a new approach to the 

problem in determining the profile of the extinction 
coefficient of an inhomogeneous scattering medium which  



254   Atmos. Oceanic Opt.  /April  1993/  Vol. 6,  No. 4 V.V. Veretennikov  
 

 

uses the information about the optical transfer function of 
the medium in small–angle approximation of the radiation 
transfer theory. In contrast to lidar methods the above–
discussed problem does not require the pulsed radiation 
sources to be applied and the resolution of the spatial 
structure of a medium requires the inverse problem to be 
solved. For the OTF measurements to be inverted we 
propose a regularizing algorithm with the use of the 
a priori information about the unknown function. In the 
numerical experiment we showed the efficiency of the 
algorithm and studied the efficiency of the inverse 
problem solution depending on the position of the 
scattering layer. It was found that to increase the 
reconstruction accuracy of the extinction coefficient 
profile it is necessary to carry out measurements at the 
boundary of the scattering layer. The method can be used 
for optical diagnostics of a spatial structure of coarsely 
disperse media of the type of thin cloudy layers or a near–
surface layer of the sea under conditions of multiple 
scattering.  
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