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This paper presents a technique for calculating cross sections of excitation of 

atoms by fast electrons. To do this a technique of expansion over partial wave 
functions taking into account the antisymmetric properties of the wave function, is 
used. The scattering operator takes into account spin–dependent interactions. Using 
Born approximation we have calculated a cross section of the intercombination 
transition 11S – 33S of helium atoms. Calculational results show that at energies of 
electrons about 10 keV and above the corrections of the scattering operator for 
relativistic effects should be done.  

 
Effect of spin symmetry in the scattering theory 

results in a number of phenomena of the fundamental 
importance.1,2 In connection with the development of the 
polarization spectroscopy the scattering processes leading 
to the polarization of atomic states are of particular 
interest. In the case of electron–atom collisions an 
account of spin characteristics explains an effect of spin 
polarization of electrons and occurrence of 
intercombination transitions in atoms.  

In the context of the quantum theory of scattering a 
spin–dependent scattering amplitude is a consequence of 
exchange effects between the states of a bombarding 
electron and of an electron in the atom. However, the 
exchange fraction of the scattering amplitude falls off 
with increasing energy4 as ε–3 and at energies of several 
hundreds of electron volts becomes negligible. The other 
way of taking the spin characteristics of particles into 
account is to involve relativistic corrections into the 
scattering operator. In Breit approximation5 these 
corrections are described by "spin–own orbit" (H1), 

"spin–foreign orbit" (H2), and "spin–spin" (H3) 

interaction operators  
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where si and li are the spin and orbital moments of an 

electron with the momentum pi and radius–vector ri.  

Small parameter (ζ) implicitly entering into the 
operators describing the spin–dependent interactions well 
explains their weakness. It can be separated out in an 
explicit form by considering the dimensional factors of  

corresponding operators. As a result we obtain that for 
spin–orbit coupling  
 

ζ = α 
β

1 – β2
 Ry (4) 

 
and for spin–spin coupling  
 
ζ = 2 α2 Ry , (5) 
 

where α is the fine–structure constant and β = (ν/c). 
Consequently, the most essential contribution to the cross 
section of inelastic scattering comes from the spin–foreign 
orbit interaction because it explicitly depends on the 
momentum of a bombarding electron. The cross section of 
an electron scattering process described by the H

3 operator 

is proportional to the value α4 ln ε, while the cross section of 
excitation of the intercombination transition of an atom 
rapidly falls off with increasing energy. The estimates show 
that for forbidden optical transitions at energies of several 
keV the contribution from the process described by H

2 

operator to the scattering amplitude becomes comparable to 
that coming from electrostatic interaction.  

Mittleman6 has derived a formula for the cross section 
of intercombination transition in the Born approximation 
involving the H2 operator into the scattering operator. 

Calculations done for the transition 11S – 23S in the helium 
atom show that the interaction process described by 
operator H

2 noticeably contributes to the scattering cross 

section in the energy range near 8 keV.  
In this paper we develop a more general method of 

calculating the cross section of the atomic excitation that 
involves the H

2 operator and uses expansion over partial 

waves.  
Let an atomic state, in the case of the LS–type 

coupling, be described by quantum numbers γ, L1, S1, ML1
 

and MS1
 and the state of an incident electron by a wave 

vector k and by a spin projection μ on the Z axis. 
Amplitude of the transition  
 

Γ = (γ0L1S1ML1
MS1

; k0 μ0) – Γ′ = (γ′L′1S′1M′L
1
M′S1

; kμ) 

 

has the form  
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f
ÃÃ′ = – 

2πm
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where V is the interaction operator involving the 
electrostatic interaction and spin–orbit coupling operators  
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In the general case based on the antisymmetry 

properties of the wave functions the scattering amplitude is  
 

f
Ã′Ã = – 

m

2πh2 ⌡⌠ AΦ*
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where A is the antisymmetrizing operator and Ψ(ζ) is the 
wave function of the "electron + atom" system.  

Now we expand the Ψ function over eigenfunctions of 
the Hamiltonian of an atom  
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To separate the angular and radial variables let us 

expand the wave functions of the incident electron before 
and after the collision over spherical harmonics  
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Then, by substituting these expansions in Eq. (8) we 

obtain  
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Let us now pass to the representation of coupled 

momenta L = L1 + λ, S = S1 + s, and J = L + S, where 

L, S, J are the total momenta of the "electron + atom" 
system. Let us denote the new set of quantum numbers as 
Λ : Λ = L

1 S1 λs LS JM. Then the scattering amplitude can 

be written as  
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where (Γ⏐Λ) denotes the coefficient of Γ to Λ transform and 
is equal to  
 
(Γ⏐Λ) = <L

1ML1
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Summation in Eq. (13) is performed over those 
quantum numbers from the set Λ which do not enter into Γ, 
i.e., Γ/Λ = LMLSMS JM.  

Matrix elements being involved from Eq. (13) are 
calculated using the technique of the angular moment 
theory.5 In the below formulas we use the following 
designations for matrix elements of different interactions: 

V(el)

Λ′Λ
 for the electrostatic interaction, V(ex)

Λ′Λ
 for the 

exchange one, and V(so)

Λ′Λ
 for the spin–orbit coupling.  
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where the following designations are introduced:  
 

[j1, j2, ...] ≡ (2 j1 + 1) (2 j2 + 1) ... , (18) 
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In calculations it is assumed that only an optical 
electron of an atom takes part in the transitions and that 
the parentage scheme is valid for the outer electron shell.  

Taking into account Eqs. (15)–(17) we can write the 
scattering amplitude as follows:  
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 Calculation of matrix elements (15)–(17) is reduced 
to calculation of radial integrals (19)–(25). To determine an 
unknown radial function of an incident electron g

γλμ
(r) it is 

necessary to solve the equation  
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where β is the set of quantum numbers {γ, J, j}, D
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β
(r) is the 

differential operator, and D
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In the simplest case of the Born approximation 
g
γλμ

(r) = j
λ
(r)δ

γγ0
, where γ0 denotes the initial atomic state.  

The angular dependence of the scattering amplitude is 
separated out explicitly and is determined by spherical 
functions Y

λ′m′
.  

In the region of high energies of electrons a great 
number of partial waves should be taken into account. The 
estimates demonstrate that at ε equal approximately 10 keV 
about 100 partial waves will be needed.  

The developed method is applied to calculation of the 
excitation cross section of the helium atom transition 11S –
 33S. The results of calculations are given in Table I.  

As can be seen from the table, the cross section of 
scattering caused by exchange process between an electron 
and the electrostatic potential descreases while the cross 
section corresponding to the spin–orbit coupling increases 
with increasing ε. Thus at 10 keV their ratio is about 0.14, 
i.e., the spin–orbit coupling begins to contribute 
appreciably to the scattering cross section. At higher 
energies the cross section is determined by the spin–orbit 
coupling alone, since the cross section of scattering due to 
exchange processes continues to decrease.  

The energy range under study, where the relativistic 
corrections contribute significantly to the scattering cross 
section, is now available in experiments. As an example, the 
gas discharges initiated by a beam of runaway electrons7 can 
be mentioned. The energy transfer from the electron 
component of plasma mainly occurs through allowed optical 
transitions. Intercombination transitions can be used in this 
case as a diagnostic mean of the high–energy portion of the 
electron energy distribution function and its anisotropic 
characteristics.  

 
TABLE I. Excitation cross sections for the transition 
11S – 33S in the helium atom for different energies of an 
incident electron.  
 

Electron energy, Excitation cross section, πa0
2
 

keV exchange spin–orbit 
1 8.89⋅10–6

 6.67⋅10–11
 

2 1.25⋅10–6
 1.26⋅10–10

 

3 3.93⋅10–7
 2.20⋅10–10

 

5 9.00⋅10–8
 1.01⋅10–9

 

7 3.39⋅10–8
 1.44⋅10–9

 

8 2.30⋅10–8
 1.56⋅10–9

 

9 1.63⋅10–8
 1.65⋅10–9

 

10 1.20⋅10–8
 1.72⋅10–9
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