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The problem on stimulated Raman scattering (SRS) in a randomly 
inhomogeneous medium is considered using numerical simulation techniques. 
Scattering by the fluctuations in the refractive index in the randomly inhomogeneous 
medium is shown to have a significant effect on SRS for both a fixed pump field and 
pump beam exhaustion. For laser radiation at 1.06 μm propagating through a turbulent 
atmosphere this effect can be significant even on paths of several hundreds of meters 
in length. 

 
When an intense laser beam propagates through the 

atmosphere, stimulated Raman scattering (SRS) can 
appear.1 In addition, SRS affects strongly the beam 
depending on the radiation intensity, the wavelength, etc. 
on paths whose length vary from several hundreds of meters 
to several tens of kilometers. As is well known, the random 
fluctuations in the dielectric constant due to the turbulent 
air motion strongly affect the laser beam. Therefore, the 
problem of stimulated Raman scattering in a randomly 
inhomogeneous medium is of interest for estimating the 
contribution of SRS to the propagation of intense laser 
beams. In the paper this problem is studied by the methods 
of numerical simulation for stationary SRS of the Gaussian 
pump beams. 

Let us assume that the Gaussian pump beam with the 

intensity I = I0 e
–(r/a)2, where a is the characteristic beam 

radius, is incident on the boundary of the randomly 
inhomogeneous medium. Equations of quasioptics for the 
complex amplitudes of pump waves Ep and Stokes 

component ES with allowance for SRS in the randomly 

inhomogeneous medium take the form 
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where ωp and κp are the frequency and the wave number of 

the pumping radiation and ωS and κS are the same ones for the 

Stokes component, 
∼
n is the random component of the 

refractive index n = n0 + 
∼
n engendered by the turbulent 

fluctuations of the parameters of the medium, g is the 
coefficient of amplification due to stimulated Raman 
scattering, and Δ

⊥
 is the transverse Laplacian operator. 

The complex amplitude of the Stokes radiation on the 
boundary of the randomly inhomogeneous medium is specified 
in the form of the random field δ–correlated over the 
transverse coordinate and caused by spontaneous Raman 
scattering and fluctuations of the Stokes field on the 
boundary.2 

Equations (1) and (2) were solved by the separation 
technique for physical factors.4 In so doing, the randomly 
inhomogeneous medium was represented by the sequence of 

random phase screens.3,4 For the fixed sequence of the 
random phase screens we calculated the physical quantities 
of interest for us (pump and Stokes radiation intensities and 
powers) and averaged them over an ensemble of realizations 
of the random Stokes seed upon entering the medium. 
Because the characteristic relaxation time for the refractive 
index field due to the turbulence is much longer than the 
transverse relaxation time T of the active Raman transitions 
and of the duration of laser pulses for which SRS can be 
obtained at present, the above–mentioned averaging is 
equivalent to the averaging over the time interval much 
shorter than the relaxation time for the refractive index 
field, but much longer than T, or to averaging over the time 
over which the pulse acts. 

As a result of such an averaging, one realization of the 
corresponding random quantity was obtained. This 
realization was determined by the real realization of the 
random field of the refractive index (by the specific 
collection of the random phase screens). By performing such 
calculations for different collections of random phase 
screens, we obtained different realizations of the quantities 
of interest for us, which were further used to determine the 
statistical properties of these quantities. In the calculations 
the refractive index fluctuations were chosen with the von 
Karman spectrum 
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where κ0 = 2π/L0, L0 is the outer scale of the turbulence, 

κ
m
 = 2π/l0, l0 is the inner scale of the turbulence, and C 2

n
 

is the structure characteristic of the refractive index 
fluctuations. 

Calculations were performed for the inner scale of 
turbulence l0= 0.9 cm, the characteristic radius of the 

beam a = 5 cm, and the radiation wavelength 
λ = 1.06 μm. The amplification coefficient due to SRS 
was g = 2.5⋅10–12 cm/W. The structure characteristic of 
the refractive index fluctuations C 2

n
 varied from 10–17 to 

10–14 cm–2/3. These values are most typical of the surface 
atmospheric layer.  

Figure 1a shows the plots of the dependence of the 
average power for the Stokes beam PS and pump beam Pp 

on the longitudinal coordinate z for different values of 
the structure characteristic of the refractive index 
fluctuations C 2

n
. The pump power upon entering the 

medium was P0 = 109 W. The power PS is shown in the 
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figure in both linear and logarithmic scales. As can be 
seen from Fig. 1a, the strong dependence of the Stokes 
beam power on C 2

n
 is observed both in the region in 

which SRS occurs in the fixed pump field (PS n Pp) and 

in the region in which the pump beam is exhausted. In 
addition the power of the Stokes component is increased 
with increase of C 2

n
 for any longitudinal coordinate. Such 

a dependence on C 2
n
 is observed in the case in which the 

decrease of the average intensity of the pump beam due to 
scattering by turbulent fluctuations of the refractive 
index is negligible at the distance at which a considerable 
portion of the energy is transferred into the Stokes beam. 

 

In Fig. 1b the dependences of PS on z for different C 2
n
 

are shown in the case in which the above condition may be 
violated. On the initial section of the path, where the pump 
intensity varies insignificantly, the dependence is the same as 
in the previous case: the value of PS increases with increase of 

C 2
n
. At the same time, the sharp decrease of the rate of growth 

for the Stokes power due to the decrease of the pump intensity 
takes place for large values of C 2

n
 (C 2

n
 = 10–14 cm–2/3), 

and the Stokes power PS for C 2
n
 = 10–14 cm–2/3 becomes 

smaller than that for C 2
n
 = 10–15 cm–2/3 at a certain 

distance from the starting point of the path. 
 

 

 
 

 
 

FIG. 1. Dependence of the average power of the pump beam Pp (curves denoted by p) and Stokes beam PS (denoted 

by S) on the longitudinal coordinate z for different values of C 
2
n
 in linear (solid lines) and logarithmic (dashed lines) 

scales (a): 1) C 
2
n
 = 10–14, 2) 10–15, 3) 10–16, and 4) 10–18 cm–2/3. Dependence of the average power of the Stokes 

beam PS on the longitudinal coordinate z for different values of C 
2
n
 for P0 = 2.5⋅108 W (b): 1) C 

2
n
 = 10–14, 2) 10–15, 

and 3) 10–16 cm–2/3. 
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FIG. 2. Distribution functions for the energy of the Stokes beam PS for different longitudinal coordinate z: a) 125, b) 375, 

and c) 750 m. 
 

       
FIG. 3. The distribution functions for the value zthr: 1) C 

2
n
 = 10–16, 2) 10–15, 3) 5⋅10–15, and 4) 10–14 cm–2/3. 

 
FIG. 4. Dependence of the average pump intensity Ip (curves denoted by p) and Stokes radiation (denoted by S) on the 

beam axis on the longitudinal coordinate z at different values of C 
2
n
: 1) 10–14, 2) 10–15, and 3) 10–16 cm–2/3. 

 
In Fig. 2 the distribution functions f(PS) of the random 

quantity PS are shown for P0 = 109 W, C 2
n
 = 10–15 cm–2/3, 

and different longitudinal coordinate (∫f(PS) dPS = 1). As can 

be seen, the average value of PS and its variance as well as the 

form of the distribution function vary with increase of z. On 
the initial section of the path the most probable value of PS is 

of the same order of magnitude as the square root of the 
variance, or much greater. Then the distribution function 

sharply decays at PS
 = 0, the most probable value of PS is 

smaller than the square root of the variance (σpS)
1/2, and 

when the energy transfers into the Stokes beam, the 
distribution function has the same form as on the initial 
section of the path. 

The calculations performed for P0 = 109 W and 

different values of C 2
n
 varying from 10–17 to 10–14 cm–2/3 

showed that this behavior of the distribution function 
retains for any C 2

n
. 

It is convenient to introduce the parameter zthr that 

means the path length at which the significant portion of 
the beam energy (according to our calculations, about 
1%) is transferred into the Stokes component and to 
estimate the minimum length of the path for which SRS 
may significantly contribute to the propagation of the 
intense laser beam. 

Figure 3 shows the distribution functions F(zthr) of 

this random quantity with a pump power of 109 W for 

different values of C 2
n
 (∫F(zthr) dzthr = 1). As can be seen,  
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the average value of zthr decreases and the variance 

increases with increase of C 2
n
. But there are no 

considerable changes in the form of the distribution 
function.  

Calculations show that the Stokes intensity IS on 

the axis is dependent on C 2
n
 both in the regime of the 

fixed pump field and in the regime of the pump beam 
exhaustion (see Fig. 4). The distribution function for the 
Stokes intensity undergoes the same qualitative changes 
as the distribution function for the Stokes power. The 
sharp decrease of the Stokes intensity on the axis in the 
region where IS > Ip is due to the large divergence of the 

Stokes beam obtained as a result of SRS. 
The effect of SRS in the direction of beam 

propagation on the beam of the intense laser radiation is 
reduced to the energy transfer into the Stokes component. 
Under these conditions the beam divergence is increased. 
The increase of the beam divergence also takes place as a 
result of propagation of the laser beam through the 
randomly inhomogeneous medium. Therefore, the problem 
of interest is how SRS affects the beam pattern in the 
randomly inhomogeneous medium. In order to elucidate 
this problem, we performed the calculations for three 
cases: (1) C 2

n
 = 0 and P

l
 = 2.5⋅109 W, (2) C 2

n
 = 10–14 cm–2/3 

and P
l
 = 107 W, and (3) C 2

n
 = 10–14 cm–2/3 and 

P
l
 = 2.5⋅109 W. In the first and third cases we calculated 

the parameter K = Ppor/P specifying the  

portion of the beam power propagating at the fixed angle 
J = 4 κ

l
 a at the distance from the starting point of the path 

sufficient for the complete transfer of the energy into the 
Stokes beam. The first case corresponded to SRS in the 
homogeneous medium. The parameter K = 0.2 was determined 
by SRS alone. In the second case SRS had no pronounced 
effect on the beam. The parameter K = 0.2 was determined 
only by scattering in the randomly inhomogeneous medium. In 
the third case both SRS and randomly inhomogeneous medium 
had pronounced effects. In this case K = 0.04. Thus, in the 
case in which both SRS and scattering in the randomly 
inhomogeneous medium had pronounced effects, these two 
effects interacted. 

Our results show that fluctuations in the refractive index 
of the medium due to the turbulence may contribute to the 
SRS process and to the propagation of the intense laser beam 
in the atmosphere under conditions of SRS. In this case the 
contribution can be significant even on paths of several 
hundreds of meters in length. 
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