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Some effects resulting from an unstable behavior of intense wave beams under 
conditions of thermal blooming in a weakly absorbing medium are considered. 
Numerical simulation of the problem is carried out by solving a self–consistent 
problem using the splitting method. To provide a calculational stability a control 
procedure based on a spectral criterion of stability is used during the solution process. 
It is shown that in a stationary regime of a limited beam thermal blooming in a 
moving medium there can occur the decay instability as well as the occurrence of 
soliton–like solutions is possible. Instability of a phase conjugation that can appear 
during an adaptive control of an intense beam is analyzed.  

 
In recent years researchers and designers of adaptive 

optical systems1,2 concentrated their attention on the 
problems of a thermal blooming instability, in particular, 
on the stable behavior of a laser beam when its adaptive 
control is performed by the phase conjugation method. In 
spite of the fact that the qualitative aspect of such 
processes is clarified for some cases, it is difficult to 
describe them quantitatively, especially in the case of 
dynamic control of a beam.  

Numerical simulation is the basic method intended 
for studying the instabilities which occur in the powerful 
laser beams propagating through the atmosphere as well 
as for solving applied problems of thermal blooming. It is 
necessary to apply the nonlinear wave theory and 
hydrodynamics of continuous media3,4 to the 
mathematical description of thermal blooming of a beam  
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Equations (1) and (2) are the evolution quasilinear 

differential equations in partial derivatives of the first and 
second orders. At the present time the system of Eqs. (1) and 
(2) can be solved only by numerical methods. In their turn, 
calculational algorithms developed in terms of difference 
schemes and discrete series can be the cause of instabilities 
themselves, even for linear equations.5  

Recently, a wide class of stable difference schemes for 
the homogeneous equations of the hyperbolic and parabolic 
types has been studied. The spectral and energy characteristics 
of stability were developed for both stationary and 
nonstationary problems. Absolute stability of the component–
by–component splitting method for solving the quasilinear 
evolution equations has been proved theoretically.6  

In this paper numerical simulation of some effects of the 
unstable behavior of intense wave beams is presented based on 
the modified splitting method proposed earlier.8 In order to 
provide the calculational stability and obtain reliable results 
we use the procedure of a continuous control through the 
whole algorithm performance which is based on the spectral 
criterion of stability.  

1. COMPUTATIONAL INSTABILITY 
 

The splitting method is the indisputable leader among 
numerical methods intended for solving evolution equations 
(1) and (2). It has the second order of approximation with 
respect to z in a symmetric computational scheme and it is 
absolutely stable for sufficiently smooth functions E and T 
even for nonhomogeneous quasilinear equations.6 However, as 
the experimental calculations show, the smoothness condition 
of functions E and T can be violated in the process of 
numerical simulation of the problem in the case of large 
inhomogeneities of a medium.  

Figure 1 shows evolution of the spatial spectrum of the 
field at the stage of the numerical solution of the stationary 
problem of thermal blooming. The spectral analysis of the 
solution convincingly shows that nonlinearity can lead to a 
fast increase in the intensity of high frequency harmonics.  

To remove instabilities in calculations it is necessary to 
introduce certain procedures of the solution control. Let us 
write Eq. (1) in the operator form  
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FIG. 1. Increase of the spatial spectrum harmonics of the 
field on the step Δz: z = zj (dashed curve) and zj+1

 (solid 

curve).  
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We apply the splitting procedure to Eq. (3), i.e., 
divide the axis z of the evolution variable z to N = z/Δz 
steps and write down the system of equivalent equations at 
the jth step in a symmetric form  
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Such a system is known to have the second–order 

approximation  
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are written in the operator form.  

Let us introduce a control operator LC to the 

algorithm of the approximate solution  
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The representation of the operator L j

C
(Δ z) can be 

naturally related to the algorithm of the step operator  

L j

D
(Δ z), which makes the main contribution to calculations.  

For solving the diffraction problem we use the 
algorithm of fast Fourier transform (FFT), which makes it 
possible to calculate the step operator in the spectral space  
 
Fk(Δz) = Fk(0) exp ( – i k2Δ z/2) , 

 
where  
 

Fk = ∑
m

 
 Em exp ( – ikm) ,  k, m = 0, 1, 2, ..., n – 1 . 

 
Therefore, a control of the computational stability 

conservation should be performed in a spectral space. This 
makes it possible to use directly the spectral criterion of 
stability or to combine it with any of the energy criteria.6  

Since the norm of the step operator is equal to unity 
the increase in the high frequency harmonics is possible only 
due to the energy transfer from the low frequency portion of  

the spectrum. If the control operator is represented in the 
form of the filtering function  
 

H(k) = Fk(Δ z) exp( – k2/k
0

2) ,  

 
the algorithm stability will be provided owing to 
conservation of the spectral radius k

0
.  

However, owing to such a procedure this calculational 
scheme becomes nonconservative with respect to energy.  

More preferable procedure is that of estimating the 
increase of derivative of the field spectrum  
 
G
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together with the energy criterion at the step Δz:  
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In the case of violation of the stability condition the 

execution of the problem is either terminated or, according 
to the methods of interval arithmetic, there occurs return to 
the previous step and correction of the length of the step Δ z 
and of other parameters of the problem.  

 
2. INSTABILITY WITHIN LIMITED BEAMS 

 
Formally Eqs. (1) and (2) are of one and the same 

type, i.e., they are of evolution type. However, the physical 
meanings of the evolution variables in these equations are 
different: in parabolic wave equation (1) the evolution 
variable is the longitudinal coordinate z while in transfer 
equation (2) it is time t. Therefore, in the case of 
appearance of unstable processes one could expect their 
further development both in the space and time.  

Let us consider a stationary regime of thermal 
blooming, which can be described by the system of 
equations  
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From the classical theory of nonlinear waves it is well 

known that a plane monochromatic wave conserves its 
stability only conditionally when propagating through a 
focusing medium with cubic nonlinearity, i.e., until its 
power exceeds certain critical value.7 Thermal nonlinearity 
of the atmosphere is defocusing and a plane wave stability 
in such a medium is absolute. However, for limited wave 
beams such cases of propagation are feasible in which not 
only a decay instability of the beam can occur but also the 
soliton–like solutions can appear.  

Let us set the boundary conditions for Eq. (4) in the 
form of a super–Gaussian beam  
 

E(x, y) = E
0
 exp [ – (x2 + y2)m] ,  

 
where m = 1, 2, ..., n.  

We can vary the smoothness of the function E(x, y) at 
the input to the nonlinear medium by varying the parameter 
m and by increasing the amplitude E

0
 to make the medium 

nonlinearity stronger.  
Equation (4) describes the evolution of the field E 

along the longitudinal coordinate z and Eq. (5) does the 
evolution of the field T in the plane (x, y) perpendicular to  
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the direction of the vector of the transfer velocity with 
the components Vx and Vy. Taking into account the 

asymmetry of the problem in the case of a strong 
nonlinearity of the medium one could expect an increase 
of nonlinear effects in the direction of the transfer vector. 
Figure 2 shows the results of calculations for a one–
dimensional beam for the parameters E

0
 = 33 and m = 1. 

At the initial portion of the path the beam is deflected 
toward the medium flow (Fig. 2a), however, it loses the 
axial symmetry because of the dependence of the beam 
displacement on the intensity. The appearance of the 
sharp front of temperature gradient would lead to the 
whole beam instability and to a decay of the beam into 
fragments. Further deflection of the beam and the energy 
redistribution occur in the process of the beam 
propagation (Fig. 2b).  

 

 

 
FIG. 2. Evolution of the intensity profile of a Gaussian 
beam along the path: a) z = 0.04 (dashed curve) and 0.08 
(solid curve) and b) z = 0.1 (dashed curve) and 0.12 
(solid curve).  
 

The dimensionless parameter R = E
0 
z characterizes 

the instability degree of thermal blooming of a limited 
beam in a nonlinear medium (when R > 1 the process 
becomes unstable). In this example z = 0.1, therefore 
R = 3.3 and instability is strongly pronounced.  

A super–Gaussian beam with m = 8 demonstrates an 
interesting behavior. At the initial stage of propagation 
(Fig. 3a) the Fresnel diffraction leads to appearance of 
ripple from which the stable soliton–like formation is 
then formed. During thermal blooming this soliton moves 
toward the medium flow conserving its configuration.  

Instability of a limited beam is observed at the beam 
power exceeding the optimum power of a transmitter at 
given parameters of numerical simulations. Introduction 
of a feedback into the beam–medium system leads to the 
beam instability at the transmitter power lower than the 
optimum one.  
 

 
 

FIG. 3. Evolution of the intensity profile of a super–
Gaussian beam along the path: a) z = 0.04 (dashed curve) 
and 0.08 (solid curve) and b) z = 0.1 (dashed curve) and 
0.12 (solid curve).  

 

3. INSTABILITY OF A BEAM UNDER AN ADAPTIVE 

CONTROL 
 

Starting with the earliest studies of numerical simulation 
of adaptive systems for thermal blooming correction an 
unstable behavior of a beam has been noted in the case of the 
phase distribution control by a phase conjugation method. 
Such local characteristics of a beam as the maximum intensity 
and its position (coordinates in its cross section) were 
subjected to strong oscillations in the process of solving the 
nonstationary problem.9–12  

Such an instability was called the phase conjugation 
instability (PCI). The reference–wave phase, for which a 
portion of a powerful beam reflected from an object can serve, 
is used to introduce predistortions into the emitted wave front. 
The reference wave closes an optical feedback loop because it 
passes the same optical path. This condition is necessary to 
satisfy the principle of reciprocity that guarantees 
compensation for the distortions. This same condition leads at 
the same time to an instability, because the feedback amplifies 
any negligible perturbations appearing at the path between the 
emitter and the object.  

The mathematical model of an adaptive system operating 
in the nonstationary regime in the case of dimensionless 
variables has the form  
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with the initial and boundary conditions  
 
E(x, y, 0, t) = E(0) f(x, y, t) ;  
 
T(x, y, z, 0) = T

0
(x, y, z) ;  

 
lim E
x, y→∞

 = 0 ; (9) 

 

f(x, y) = exp [ – (x2 + y2) (1/2 + iδ)]  
 
which are valid at the boundaries of the computational grid.  

Boundary conditions for the reference wave were 
prescribed in terms of an independent Gaussian beam  
 

ER(x, y, L, t) = exp [ – (x2 + y2)/2 a2] (10) 
 
or the wave reflected from a specular reflector  
 

ER(x, y, L, t) = E(x, y, L, t) exp [ – (x2 + y2)/2 a2] . (11) 
 

We have developed a software package for work 
stations (AT–386/387 and AT–486 types) compatible with 
IBM PC to study numerically models (6)–(8). A procedure 
of the computational stability control is used in the 
algorithm of solving the equations. The graphic interface 
makes it possible to store the main output data such as 
profiles of the intensity and the phase, power spectra of the 
emitted and reference beams that are calculated at each 
point of the time with a subsequent reproduction of the 
process dynamics.  

 

 

 
FIG. 4. Evolution of the intensity profile of a Gaussian 
beam vs time: stationary solution (dashed curve) and 
t = 0.56 (a), t = 0.72 (b), and t = 0.81 (c) (solid curve).  
 

Figures 4 and 5 show the intensity profiles and power 
spectra of the main beam at three time points calculated as 
the ratio of the medium transfer time to the length unity in 
the transverse plane that is equal to the beam radius. With 
the development of the instability the small–scale 
inhomogeneities are amplified in the beam up to its decay 
into fragments (Figs. 4a and 4b). The spectral analysis 
reveals an increase of the high frequency harmonics with 
time (Figs. 5a and 5b).  

 

 
 

FIG. 5. Evolution of the spatial spectrum of the field vs 
time: the stationary solution (dashed curve) and t = 0.56 
(a), t = 0.72 (b), and t = 0.81 (c) (solid curves).  
 

The phase conjugation instability begins to develop 
when the beam power is lower than the optimum one, that 
could be of certain interest for applications. Recent 
theoretical studies mostly performed by numerical methods 
have revealed a number of physical mechanisms affecting 
the development of the PCI (Ref. 1). Virtually all the 
factors causing small–scale fluctuations of the amplitude 
and phase in the beam result in amplifying of the PCI, 
these are apodization by a sharp aperture, turbulent 
inhomogeneities of the refractive index of the atmosphere, 
and irregularities of the wave front of the laser source itself.  

Attenuation of the PCI is possible due to processes 
that introduce strong change in the medium during the 
adaptive mirror response and thus affecting the 
conservation of the principle of reciprocity (or, in other 
words, the quality of the amplifier) in the beam–medium 
system. Among such factors there are spatial variations of 
the medium parameters (along the path and within the 
cross section of a beam) and their temporal variations 
caused by regular and fluctuation variations of the wind 
velocity in the atmosphere, turbulent mixing of  
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inhomogeneities, fluctuations in the laser source, scanning 
by the beam when following the object motion, etc.  

Thus, the same factors (in particular, the atmospheric 
turbulence) can both attenuate and amplify the PCI. 
Therefore, for a reliable prediction of the atmospheric 
distortions of the powerful laser beams and designing the 
adaptive optical systems it is necessary to introduce the 
maximum possible number of physical parameters into the 
imitation calculational model. These parameters can be either 
directly measurable or preset in terms of average statistical 
values (for the atmosphere latitudinal, seasonal, diurnal, 
altitude, and other models of thermodynamic parameters can 
be used).  
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