
798   Atmos. Oceanic Opt.  /December  1992/  Vol. 5,  No. 12 P.A. Bakut et al. 
 

0235-6880/92/12  798-03  $02.00  © 1992 Institute of Atmospheric Optics 
 

SYNTHESIS OF A MULTI–APERTURE OPTICAL SYSTEM 

 

P.A. Bakut, I.V. Boyarkina, and I.A. Rozhkov 
 

Scientific Production Association "Astrofizika" 
Received June 23, 1992 

 

This paper deals with the problems in synthesizing optical arrangement of a 
multi–aperture optical system (MOS). An attempt to construct the exact 
mathematical description of synthesizing a MOS optical arrangement is undertaken. It 
is shown that there is a principal circumstance that improves restrictions on the 
accuracy with which the individual subbeams can be summed at the MOS focus.  

 
The interest to development and design of multi–

aperture optical systems (MOS),1 in which the ideas of 
aperture synthesis are performed, have grown in recent 
years in connection with the necessity of obtaining images 
of astrophysical objects with a high angular resolution. It 
is caused by the fact that the present standard of optical 
technology makes it impossible to create continuous 
light–weight mirrors with diameter more than 8...10 m.2–

3 But one needs the diameters about 20–25 m for 
constructing images with a high resolution.4 Therefore, a 
possible way to overcome difficulties is the creation of the 
MOS, in which small separate subapertures are spaced 
from each other by a distance essentially exceeding their 
diameters. In spite of a great number of papers published 
on the problem of creation of the MOS, the question 
about the methodical synthesis of the optical arrangement 
of the MOS has not been yet considered, excluding 
Ref. 5. An attempt to consider this question is undertaken 
in this paper.  

The simplest optical arrangement of an optical 
device, which forms the image of incoherent objects 
(independently of the configuration of the aperture 
window) and explains the principle of MOS operation, is 
presented in Fig. 1a. It is evident that this diagram can 
be equivalently represented in the form of the diagram 
(Fig. 1b) in which the big–size optical element is 
replaced by subapertures, which are (in the general case) 
the asymmetric parts of a big quadratic lens or of the 
equivalent mirror element (devices for summing the light 
beams from separate subapertures at a common focus). 
Here u(ρ) is the field in the object plane and ν(r) is the 
field in the focal plane. This diagram has no practical sense, 
since the constructions made of asymmetric quadratic lenses 
(or mirrors) are of low accuracy. However, one can imagine on 
its base that each asymmetric lens can be replaced by a 
symmetric one and by an optical element for tilting the wave 
front (for example, a plane mirror). Thus, any MOS can be 
represented in the form of classical optical arrangements of the 
image formation, where the images formed by individual 
classical subapertures, are summed into a single one at a given 
plane.  

Let us give an exact mathematical description. The 
field in the focal plane ν(r) (Fig. 2) can be represented 
accurate to unessential constants in the form  
 

ν(r) ∼ ⌡⌠
 A

 
 

⌡⌠ 
 u(ρ) exp ⎝

⎛
⎠
⎞

 – ik 

⏐r
A
 – ρ⏐2

2z  exp ⎝
⎛

⎠
⎞

ik 

r
2

A

2F  × 

 

× exp ⎝
⎛

⎠
⎞

 – ik 

⏐r – r
A
⏐2

2L  dr
A
 dρ , (1) 

 
where k is the wave number, F is the focal length of the 
lens, z is the distance between the object plane and the 
aperture plane, L is the distance between the aperture 
plane and the focal plane, r

A
 and ρ are the radius–vectors 

of the aperture plane and the object, respectively.  
 

 
 

FIG. 1. 
 

 

 
FIG. 2. 
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In the case of several subapertures (some holes in the 
screen) the integration over the aperture A is replaced by 
summing over i apertures (i = 1, ..., n)  
 

ν(r) = ∑
i=1

n
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Let us consider the contribution of each subaperture to 

the total field. To do this it is expedient to pass in the 
integral over the subaperture to the vectors counted 
beginning from the optical axis of the ith subaperture  
 
ρ
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R

i
 is the radius–vector of the ith subaperture. The origin of 

the radius–vector is at the center of the subaperture. Then 
Eq. (2) can be replaced by  
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An integral over a subaperture is very similar to the 

field formed by a subaperture with a symmetric lens in the 
plane at the distance L from the subaperture, excluding the 
odd, in this case, term exp(ik(r

Ai
R

i
/F)). Let us consider 

the term exp(ik(⏐r
Ai

 + R
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⏐2/(2F)) in more detail.  

Let us introduce the designation r – R
i
 = r

i
. Then one 

can write down this term as  
 

exp ⎝
⎛

⎠
⎞

ik 

r
2

Ai

2F  + exp ⎝
⎛

⎠
⎞

ik 

r
Ai

 R
i

F
 + exp ⎝

⎛
⎠
⎞

ik 

R2

i

2F  .  

 
The third term in this expression is not integrated 

when substituted into Eq. (3), therefore it can be taken out 
of the integral sign.  

Let us transform the rest exponents in Eq. (3)  
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And finally we derive  
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Substituting this expression into Eq. (2) and removing 

the unintegrated term from the integrand, we obtain the 
following expression:  
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The expression B = ν

i
(r

i
) is the field formed by a 

single subaperture with a symmetric quadratic lens with the 
focal length F. Therefore,  
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i=1
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Assuming r
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 = r – R
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 and taking into account the 

condition 
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 ,  we have  
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It can be seen from Eq. (5) that the fields in the 

focal planes of the subapertures are superposed so that the 
traces of the optical axes of the subapertures are at the 
points r = LR

i
/z. The field of each subaperture is 

multiplied by the phase of the form exp(ik  r R
i
/F). This 

can be explained as follows: the optical axes cross the 
main focal plane of the system at such an angle that the 
projection of the unit vector of an optical axis on the 
focal plane is equal to R

i
/F. It is natural that 

⏐R
i
⏐/F < 1.  

Let us consider Fig. 3, where 1 is the main focal 
plane of the system (the plane of the photodetector 
position, for example) and 2 is the focal plane of the ith 
subaperture. The field in the focal plane of the ith 
subaperture is equal to ν

i
(r – R

i
L/z) accurate to the 

phase factor. The spatial distribution of the field in a 
small vicinity of the focal plane of the subaperture 2 is 
equal to  
 

ν
⎣
⎡

⎦
⎤( )r – R

i
 
L

z
⊥ 

 exp (– ik n
i
r) ,  

 

where ( )r – R
i
 
L

z
⊥

 is the orthogonal component of the 

vector r – R
i
 
L

z
 (the component that remains in the plane  



800   Atmos. Oceanic Opt.  /December  1992/  Vol. 5,  No. 12 P.A. Bakut et al. 
 

 

2). If the angle between the optical axes that are brought 
together is small, the orthogonal component only slightly 
differs from the vector itself and the field in the main 
focal plane has the form  
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FIG. 3. 

 
By comparing this expression with Eq. (5) it is easy 

to verify that the projection of the vector n
i
 onto the 

main focal plane must be equal to ⏐R
i
⏐/F. Then we 

obtain the diagram of bringing the optical axes of the 
subapertures together. It is shown in Fig. 4. Evidently, 
all the results presented above are correct in the 

assumption that R
i
/F � 1.  

In conclusion it is necessary to note that the 
importance of the presence of the phase factor exp(ik(LR2

i

/2zF)) in Eq. (5) is indicative of the necessity of certain 
equalizing of the lengths of optical paths. This problem is 
well known for the MOS, a number of papers5,6 have 
been devoted to it, therefore it is not included into the  

subject of this paper. In the particular case of R2
i
 = const 

the lengths of optical paths must be merely equal to each 
other.  

The above synthesis of the optical diagram of the 
MOS makes it possible to consider the peculiarities of the 
image formation in the MOS from the exact mathematical 
point of view.  

 
 

 
 

FIG. 4.  
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