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Investigation presented in this paper concerns the lidar return power recorded in 
a bistatic optical arrangement from a rough surface with a combined scattering phase 
function of locally plane elements. An equation for that return power is derived for the 
case of sounding through an optically dense aerosol atmosphere of a surface with the 
scattering phase function including diffuse and quasispecular components. It is shown 
that the return power essentially depends on the diffuse–to–specular components ratio 
and on the roughness characteristics of the surface as well. 

 
Power recorded by a lidar when sounding a plane 

surface with a combined scattering phase function was 
studied in Ref. 1. Power recorded by a laser sounding 
system in a bistatic arrangement of sounding (when the 
source and the receiver are spaced) of a rough surface with a 
combined scattering phase function of locally plane 
elementary portions (Fig. 1) is considered below. 

 

 
 

FIG. 1. Optical arrangement of sounding. 
 
Let us assume that each locally plane element of the 

surface being sounded has a combined scattering phase 
function having the quasispecular and diffuse components.1  
The brightness I(R, m) of the radiation reflected from the 
elementary locally plane surface is equal to1  
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where E(R) = AE

s
(R), E

s
(R) is the irradiance of the 

surface produced by radiation coming from a source, A is 
the reflection coefficient of a local area, R is the spatial 
coordinate of an elementary scattering area, α and β are the 
coefficients determining the fractions of the diffusion and 
quasispecular reflection, (θ, θ0) and (ϕ, ϕ0) are the zenith 

and azimuthal angles of the observational direction and that 
of the reflected radiation maximum (the quasispecular  

component of the reflection) in the local system of 
coordinates related to an elementary reflecting surface. 
The angles θ0 and ϕ0 are related to the corresponding 

angles θs and ϕs , which characterize the direction of 

incident radiation, by the laws of geometric optics. Here 
n is the parameter characterizing the angular width of the 
scattering phase function of the diffusion component of 
reflection and Δ is the parameter characterizing the 
angular width of the scattering phase function of the 
quasispecular component of reflection. Formula (1) was 

derived for Δ � 1. 

Expression for the brightness of radiation arriving at 
the receiver and the integral relation for the power recorded 
by the receiver can be derived from the distribution of the 
brightness I(R, m) over the scattering surface S (we assume 
the shading produced by surface elements is negligible)1  

 

P = ⌡⌠  dR ⌡⌠  dΩ(m) cosθ
s
 I(R, m) Ir(R, m) , (2) 

 
where Ir(R, m) is the brightness of radiation incident from 

a virtual source (with the parameters of the receiver) on the 
surface S at the point R and θ

s
 is the angle between the 

normal to the surface S at the point R and the direction 
towards the receiver. 

In the case of a homogeneous scattering atmosphere with 
a strongly forward–peaked scattering phase function, when 
the angle, at which the received aperture is observed from the 
points on the scattering surface, is much smaller than the 
angular width of the quasispecular component of the scattering 
phase function and the characteristic scale of the surface slope 
variations and the field of view angles of the receiver, the 
expression for the power recorded by the receiver can take the 
form (in the small angle approximation for the source and 
receiver directional patterns let us assume that a source, a 
receiver, and their optical axes are in the plane XOZ, and 
then pass from integrating over the rough surface S to 
integrating over its projection S0 onto the plane z = 0, and use 

the results from Refs. 1–5) 
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where  
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Es(R) and Er(R) are the irradiances on the surface S 

produced by the radiation incident on the surface S from a 
real and virtual sources in the atmosphere, respectively,2,3  
Ls and Lr are the distances from the source and receiver to 

the surface; 2αs and 2αr are the divergence angles of the 

source and the field of view angle of the receiver, σ is the 
scattering coefficient of the atmosphere; <γ2> is the variance 
of the deflection angle appearing during an elementary 
scattering act, ζ and γ = {γ

x
, γ

y
} are the height and the 

vector of slopes of a rough surface, n = {n
x
, n

y
, n

z
) is the 

unit vector of the normal to the elementary surface, and θs 

and θr are the angles between the normal to the surface S0 

and the direction towards the source and receiver, 
respectively. 

When the heights and slopes of the rough surface S 
vanish formula (3) becomes an expression for the power 
received from the plane surface with a combined scattering 
phase function.1 

Assuming the distribution of the heights and slopes of 
the surface S to be Gaussian and averaging Eq. (3) over ζ 

and γ we can derive the expression for P
–

, i.e., the average 
(over the ensemble of surfaces) power recorded by the 
receiver (we assume also that the surface S is smoothly 

rough, γ
x
 2, γ

y
 2 � 1) 
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2 are the variances of the heights and slopes of the 

randomly rough surface S, ms = {ms x, ms z} and 

mr = {mr x, mr z} are the unit vectors indicating the direction 

of the radiation incident on the surface and the direction 
from the surface towards the receiver, W

n, m(x) is the 

Whittaker function. 
By calculating the integrals entering into Eq. (4) for 

the average power received when a randomly rough surface 
with a combined local scattering phase function is sounded, 
we derive the following analytical expression: 
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P0 is the power emitted by a source, rr is the effective 

radius of the received aperture, and ε is the extinction 
coefficient of the atmosphere. 

For σ0 and as γ0 → 0 formula (5) is identical to the 

formula for the power received for the case of sounding of a 
plane surface with a combined scattering phase function.1 
For β = 0, n = 0, <γ 2> = 0, and σ = 0 formula (5) becomes  
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an expression for the average power received from a randomly 
rough, locally Lambertian surface in a transparent 
atmosphere.6  

For α = 0, Δ → 0, σ = 0, and <γ 2> = 0, formula (5) 
becomes an expression for the average power received from the 
randomly rough locally specular surface in a transparent 
atmosphere.7  

 

 
 

FIG. 2. Received radiation power as a function of the 
diffuse–to–specular components of the scattering phase 
function ratio for a surface in a transparent atmosphere. 
 
FIG. 3. The same as in Fig. 2 but for an optically dense 
atmosphere. 

 
Figures 2 and 3 show the dependences N (the ratio of 

the power P
–

 to the power P(β = 0, n = 0, σ = 0, and γ0 = 0) 

calculated for a plane Lambertian surface) on the parameter 
β/α. Calculations were performed using formula (5) for the 
following values of the parameters:  
Ls = Lr = 103 m, αs = 10–2, αr = 10–1, Δ = 10–1, n = 0, 

θs = θr = 0, σ<γ 2> = 0 (Fig. 2); σ<γ 2> = 10–5 m–1 (Fig. 3); for 

γ0 
2 = 0 and σ0 

2 = 0 (curve 1), for γ0 
2 = 10–3 and σ0 

2 = 2 m2 

(curve 2), for γ0 
2 = 10–2 and σ0 

2 = 2 m2 (curve 3). 

 

The figures show that an increase of the fraction of the 
quasispecular component of the scattering phase function 
(the increase of the parameter β/α) leads to the increase in 
the received power. Virtually this can be explained by the 
fact that with increasing β/α the radiation reflected by the 
surface is to a greater degree concentrated in the vicinity of 
the specular reflection direction. Random roughness of the 
surface leads to weakening of this effect that is associated 
with the "spreading" of the quasispecular scattering phase 
function of the surface. 

The atmospheric turbidity increase leads to the 
smoothing effects associated with the dependence of the 
scattering properties of a surface on the received power. 

The results obtained in this paper could be useful in 
the analysis of remote sensing system functioning. 
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