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A complex approach to solving the problem of remote thermal sensing of the 
atmosphere is proposed. It is based on joint processing of data of active (lidar) and 
passive (radiometer) satellite remote sensing of the atmosphere. Some methods are 
considered for solving the inverse problems of spaceborne IR radiometry which allow 
one to assimilate and employ the information about the reconstructed temperature 
profile obtained from spaceborne lidars. The efficiency of algorithms are investigated 
in numerical experiments. 

 
In recent years active lidar sounding techniques have 

attracted an increasing attention in addition to conventional 
passive methods of remote thermal sounding of the 
atmosphere (RTSA). Thus within the framework of the 
program "Schuttle Atmospheric Lidar System" a numerical 
simulation of double– and three–frequency lidar systems 
was carried out. It was intended for the RTSA based on the 
method of separating out aerosol and molecular components 
in the received lidar returns.1,2 It turned out that the 
advantage of the lidar method is its higher vertical 
resolution (0.2–2 km) as compared to passive methods of 
the RTSA and its disadvantage is a limited lifetime of lidar 
operation, substantial energy consumption, low horizontal 
resolution (200–3000 km), and possible bias of the 
reconstructed temperature profile due to the errors in 
a priori assignment of the spectral behavior of the aerosol 
and molecular light scattering coefficients when the aerosol 
and molecular components are separated out in the received 
lidar returns. 

Described in this paper is a complex approach to 
solution of the RTSA problem which is based on the joint 
processing of the data of active (lidar) and passive 
(radiometer HIRS–II) satellite–based RTSA. In so doing 
the spaceborne lidar is used for qualitative reconstruction of 
temperature profile at high spatial resolution with 
subsequent incorporation of them into a mathematical 
scheme for processing of data obtained from the HIRS–II. 
This, in turn, requires a creation of specialized algorithms 
for solving the inverse problems (IP) of the RTSA which 
could allow one to assimilate and employ the information 
about the reconstructed temperature profiles obtained from 
spaceborne and ground–based lidars as well as data of 
radiosonde observations and contact measurements. 

 
1. ALGORITHMS FOR SOLVING IP OF THE  

COMPLEX RTSA 

 
As is well known, the passive method of the RTSA is 

based on solution of an integral radiation transfer equation 
whose simplest linearized analog can be written in the form2  

 

I(ν)=B[ν, T(1)]P[ν, T(1)]–⌡⌠
0

1

 

 

K(ν; B[ν; T(ξ)]) B[–ν; T(ξ)] dξ,(1) 

 

where I(ν) is the intensity of outgoing radiation with the 
contribution of the underlying surface at the frequency ν,  

taken into account B[ν–, T(ξ)] is the linearized Planck 

function at some central frequency ν–, P[ν, T(ξ)] is the 
function of atmospheric transmission, 
K(ν, B[ν, T(ξ)]) = dP[ν, T(ξ)]/dξ is the kernel of Eq. (1), 
T(ξ) is the temperature profile, P is the pressure, ξ = p/p

0
 is 

the variable of integration, and p
0
 is the pressure near the 

Earth's surface.  
Different physical and mathematical aspects of 

solution of Eq. (1) as applied to the RTSA are described in 
detail in Refs. 2 and 3. 

In what follows using a particular example, we 
examine the scheme for constructing a specialized algorithm 
for processing of data of a complex RTSA and in the 
numerical experiment we study its efficiency and accuracy 
characteristics. 

For brevity and simplicity, we write down Eq. (1) in 
the operator form  
 
K b = I , (2) 
 
where b is the solution vector of dimensionality n, I is the 
vector of the right–hand side of the dimensionality m, and K 
is the matrix operator of the dimensionality m×n 
corresponding to the kernel of Eq. (1). It is possible to 
construct such an operator to the best advantage (or to make 
algebraization of Eq. (1)) only by analyzing physical 
properties of the problem under study. First, it is necessary to 
take into account the fact that the vector I has small 
dimensionality (the number of recording channels does not 
exceed 7–10). On this basis, in contrast to Refs. 2 and 3, for 
algebraization of Eq. (1) the method, which has been proposed 
in Ref. 4, was used for solving the inverse problem of laser 
multifrequency sounding of the atmosphere. The essence of 
this method is as follows. 

We choose the system of nodes {ξ
l
}, l = 1, 2, ... , n in 

the region of the function b(ξ) definition and assume that the 
function b(ξ) is described analytically for each internal 
interval [ξ

l
, ξ

l+1
]. In this case it should be noted that this 

assumption does not hold for the peculiarities of behavior of 
the kernel of Eq. (1) for all [ξ

l
, ξ

l+1
]. 

For the sake of simplicity let us assume, in contrast to 
Ref. 4, that the function b(ξ) is approximated not with a 
quadratic parabola, but with a straight line, i.e., 
b(ξ)= a

l
 + d

l+1
ξ for all [ξ

l
, ξ

l+1
]. 
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The coefficients a
l
 and d

l
, in turn, are determined in 

terms of the value b(ξ
l
). Moreover, according to Ref. 4, one 

can readily obtain the expression for replacing Eq. (1) by the 
corresponding sum  

 

⌡⌠
0

1

 
 K(ν; ξ) b(ξ)] dξ = ∑

l=1

n–1
 
 ⌡⌠
ξ
l

ξ
l+1

 
 K(ν

i
; ξ) [a

l
 + d

l+1
ξ] dξ = ∑

i=1

n–1
 
 Qi, l

 b
l
,       

 (3) 
i = 1, 2, ..., m, l = 1, 2, ..., n, 
 
where K(ν; ξ) = K(ν; B[ν, T(ξ)]), and the coefficients of 
quadratures Q

i, l
 are determined using the values of the 

kernel of the equation and the grid nodes.4 The integrals in 
Eq. (3) can be calculated with any precision since the 
kernel of the equation is defined at any point of the interval 
[ξ

l
, ξ

l+1
]. Note that with such an approach to algebraization 

of initial equation (1) it is possible to reduce the 
dimensionality of the matrix of the operator K by a factor 
of two to four (keeping at the same time the required 
accuracy of the quadrature formula (3)). This, in turn, 
results in an essential increase of the operation speed of the 
algorithm for solving the IP that is of particular importance 
in the systems of operative processing of the satellite–
measurement results. 

We are coming now to the problem of constructing the 
algorithm for solving the IP. In Refs. 3 and 4 the authors used 
the method of Tikhonov's smoothing functional (TSF) for 
solving the inverse problem of the RTSA. This function was 
constructed based on limitation on the degree of smoothness of 
unknown solution. In this case the TSF takes the form 
 

Tα[b] = ⎢⎢K
∧
b – I ⎢⎢

2

L
2
 + α ⎢⎢b ⎢⎢ 2

W
2
 1 , (4) 

 
where α is the regularization parameter. 

However, in our case the TSF must be constructed 
reasoning from the presence of a priori information about 
the reconstructed profile b(ξ). In the simplest case some 
simulated profiles b

m
(ξ) = B[ν, T

m
(ξ)], where T

m
(ξ) is the 

climatic average profile of temperature, can serve as the 
aforementioned information. In a complex RTSA the 
temperature profile obtained from lidar or radiosonde data 
can be used as the climatic average profile of temperature. 
The TSF can be constructed on the basis of limitation on 
the norm of a solution deviation from the model. In so 
doing, the TSF takes the form 
 

Tα[Δb] = ⎢⎢K
∧
(Δb) – ΔI ⎢⎢

2

L
2
 + α ⎢⎢Δb ⎢⎢ 2

W
2
 1 , (5) 

 

where Δb = b – b
m
 and ΔI = I – I

m
 = I – K b

m
. 

It should be noted that such a method was used 
elsewhere by one of the authors of this paper for processing 
the results of laser sounding of the atmospheric ozone5 as 
well as by the authors of Refs. 3 and 6 for solving the IP of 
the RTSA using the method of statistical regularization. 

Consider now the problem on minimizing 
functionals (4) and (5). It is well known7 that this problem 
can be solved either by direct minimization of 
functionals (4) and (5) or by reducing this problem to the 
Euler equation for the TSF. In this paper the method of 
conjugate gradients (MCG) was used for minimizing 
functionals (4) and (5). The advantages of this method are 
the guaranteed convergence, easy computer performance, 
and possible creation of different modifications depending  

on the presence of one or another additional information 
about the reconstructed profile T(ξ). This can be the 
information about the presence and height of temperature 
inversions, information about a possible value of deviation 
of T(ξ) form T(ξ). In the latter case the problem of 
minimizing functionals (4) and (5) can be solved under 
restrictions in the form of inequalities and so on. 

To study the efficiency of the proposed method for 
solving the IP of the RTSA a series of numerical 
experiments has been conducted. The results of these 
experiments are discussed below.  

 
2. A SCHEME OF NUMERICAL EXPERIMENT 
 
In calculations it was assumed that the outgoing 

radiation was measured in the 15–μm CO
2
 absorption band 

using an IR radiometer HIRS–II incorporated into the 
instrumentation TOVS of the NOOA satellite (the central 
frequencies were 669, 680, 690, 703, 716, and 733 cm–1). 
For temperature models we used the model profiles T

m1
 

(midlatitude summer) and T
m2

 (tropical model) on which 

the perturbations ΔT
1,2

(ξ) were imposed. Thus 

T
1
(ξ) = T

m1
(ξ) + ΔT

1
(ξ), T

2
(ξ) = T

m2
(ξ) + ΔT

2
(ξ), and 

ΔT
1
(ξ) and ΔT

2
(ξ) were chosen based on the data from 

Ref. 3. The simulation was aimed at studying the accuracy 
characteristics and the comparative analysis of calculational 
schemes (4) and (5) and the method of statistical 
regularization. When the climatic average profiles were used 
as a priori model, T

1,2
(ξ) was reconstructed at 21 points. At 

the same time, using a random–number generator, relative 
error of the order of 1% was introduced into the left hand–
side of Eq. (1), which was consistent with real errors in 
recording the outgoing radiation intensity I(ν) with a 
radiometer HIRS–II. 

The regularization parameter was chosen using the 
method of generalized discrepancy with the subsequent 
correction based on the quasioptimal criterion.7  The 
atmospheric transmission functions P[n, T(ξ)] and the 
kernel of Eq. (1) were calculated using the approximation 
methods.8 In studying the efficiency of the complex 
approach to the solution of the IP of the RTSA (spaceborne 
lidar + radiometer) the temperature profiles were 
reconstructed using scheme (5), but in this case the 
temperature profile obtained from the lidar data, T

L
(ξ), was 

used as an a priori profile T
m
(ξ). To this end, numerical 

simulation of the experiment on the RTSA was made for a 
spaceborne three–frequency lidar with the energy 
characteristics given in Ref. 1. However, in contrasts to 
Ref. 1, where the temperature profile T

s
(ξ) was 

reconstructed based on the method of separating out the 
aerosol and molecular components in lidar returns, we used 
the regularization algorithms for processing of the optical 
sounding data. 

Reconstruction of the profile T
s
(ξ) was accomplished 

at 41 points with 1 km vertical and 100 km horizontal 
resolutions and was of qualitative character, i.e., only the 
altitude and the sign of deviation of real temperature profile 
T

s
(ξ) from the climatic average one were determined. The 

values of thus obtained ΔT
s
(ξ) and T

s
(ξ) were included into 

the mathematical scheme of processing of data obtained 
with the radiometer HIRS–II. 

The detailed description of this method for 
reconstructing the temperature profile and estimating of its 
efficiency are beyond the scope of this paper and will be 
given in the subsequent publications. 
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We now turn to the discussion of the results of 
numerical simulation. 

 

3. RESULTS OF NUMERICAL SIMULATION 
 

Depicted in Fig. 1 are the results of reconstructing the 
simulated temperature profile T

s
(ξ) obtained by the 

calculational scheme (4). For comparison Fig. 2 presents the 
same data obtained using scheme (5). 

 

 
 

FIG. 1. Results of numerical experiment on reconstructing 
the simulated temperature profile: solid curve is the exact 
values T

2
(ξ) = T

m2
(ξ) + ΔT

2
(ξ) and dotted curve is the 

values of T
2a

(ξ) reconstructed by scheme (4). 
 

 
 

FIG. 2. Results of numerical experiment on reconstructing 
the simulated temperature profile: solid curve is the exact 
values T

2
(ξ) = T

m2
(ξ) + ΔT

2
(ξ) and dotted curve is the 

values of T
2a

(ξ) reconstructed by scheme (5), with the 

a priori profile being the climatic average profile. 
 

 
 

FIG. 3. Results of numerical experiment on the complex 
remote thermal sensing of the atmosphere: dashed curve is 
the exact values of ΔT

3
(ξ) , dotted curve is the values 

ΔT
3a

(ξ) reconstructed by scheme (5), with the a priori profile 

being the lidar one, and curve with triangles presents the 
values of ΔT

3a
(ξ) reconstructed by scheme (5), with the 

a priori profile being the climatic average one.  

The climatic average profile of temperature T
m2

(ξ) was 

used as an a priori model. 
Figure 3 presents a good illustration of the efficiency of 

the complex approach to solution of the IP of the RTSA when 
ΔT

s
(ξ) is reconstructed by scheme (5) with the a priori model 

of the temperature profile reconstructed from lidar data. 
 

 
 

FIG. 4. Mean error of reconstructing temperature profiles 

ΔT
–

 as a function of errors in recording the outgoing 
radiation intensity δ. 1) reconstructed by scheme (4) without 
a priori information, 2) reconstructed by scheme (5), a priori 
profile is the climatic average one, and 3) reconstructed by 
scheme (5), a priori profile is the lidar one. 
 
TABLE I. Comparison of interpretation methods. 
 

 

Method of reconstructing ΔT
–

 
ΔT

max
 

 
T

1
(ξ)

 
T

2
(ξ) 

Scheme
 
(4),  

TSF method 
ΔT
–

 
ΔT

max
 

 
2.2 

 4.0 

 
3 

 4.2 

Scheme
 
(5), TSF method with 

a priori information 
ΔT
–

 
ΔT

max
 

 
1.2 

 2.3 

 
1.1 

 2.2 

Method of
 
statistical regularization 

with adequate statistics 
ΔT
–

 
ΔT

max
 

 
1.8 

 3.8 

 
1 

 2.3 

Method of
 
statistical regularization 

with inadequate statistics 
ΔT
–

 
ΔT

max
 

 
3.5 

10 

 
2.6 

 5.6 

 

Figure 4 and Table I, by analogy with Ref. 3, give the 
results of estimating the accuracy characteristics of the T

1, 2
(ξ) 

reconstruction depending on the scheme of the RTSA data 

interpretation. Here ΔT
–

 = ∑
i=1

n

 ⏐T(ξ
i
) – Tα(ξi)⏐/n characterizes 

some mean deviation of the reconstructed profile Tα(ξ) from 

an actual one T(ξ) and ΔT
max

 is the maximum deviation of 

Tα(ξ) from T(ξ). 
 

4. CONCLUSIONS AND RECOMMENDATIONS 

 
We can infer from the simplest qualitative analysis of 

the graphic information presented in Figs. 1–3 that 
algorithm (5) possesses high efficiency compared to the 
standard scheme of the TSF. At the same time, by analyzing 
quantitative estimates of the accuracy characteristics of 

reconstructing temperature profiles ΔT
–

 and ΔT
max

 listed in 

Table I it is possible to draw the following conclusions. 
1. The method of statistical regularization, in the 

presence of adequate statistics, is preferable compared to the 

TSF method, since ΔT
–

 determined by the method of 

statistical regularization equals 1–2 K, while ΔT
–

 obtained 
by the TSF method is from 2 to 3 K. 
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2. If the statistics is inadequate the TSF method is 

proved to be more useful, since ΔT
–

 calculated by the 
method of statistical regularization runs between 2.5 and 
3.5 K, while ΔT

max
 can reach from 6 to 10 K.  

The values ΔT
–

 obtained by scheme (5) and by the 
method of statistical regularization for adequate statistics, 
are practically of the same value. In its turn, the value 
ΔT

max
 obtained by scheme (5) is much smaller than that of 

ΔT
max

 obtained by the method of statistical regularization in 

the case of inadequate statistics. 
It should also be noted that scheme (5) to be 

performed needs for much less a priori information than the 
method of statistical regularization does and it can readily 
be performed on a computer. One more advantage of 
calculational scheme (5), when it is used for processing of 
the data at stations of regional reception of information 
from satellites, is its ability to assimilate practically any 
a priori information about the temperature profile under 
reconstruction. These can be the results of radiosonde 
observations, lidar and sodar data, and the results of 
contact measurements obtained from aircrafts, ground–
based meteorological stations and so on. In this case, the 
a priori data can be without statistical basis and, moreover, 
can be of a purely qualitative character, e.g., height and 
sign of thermal inversion obtained from the sodar, the lower 
boundary height and optical characteristics of cloudiness 
obtained based on the lidar data and so on. 

Finally, Fig. 4 depicts the accuracy of temperature 
profile reconstruction as a function of the level of errors in 
recording the outgoing radiation and the scheme of 
interpretation. The plots in Fig. 4 have some peculiarities. 

1) All curves originate not from the point (0, 0) but from 

the points (0, ΔT
–

0
). The value ΔT

–
0
 describes the so–called 

"zero noise" of the algorithm. It is obvious that calculational 
scheme (5) and quadrature formulas (3) made it possible to 

essentially decrease the value of ΔT
–

0
. It should be noted 

that curve 1 in Fig. 4 was obtained, as in Ref. 3, by 
scheme (4) and using a quadrature formula of trapezoid for 
unequally spaced nodes during algebraization of Eq. (1). 

2) A relatively weak dependence is revealed of ΔT
–

0
 on 

the level of errors in recording the outgoing radiation. 
3) Joint processing of data of active (lidar) and passive 

(IR radiometer) soundings enables one to essentially reduce 
the "zero noise" of the algorithm for reconstructing T(ξ) and 
noticeably increase vertical resolution of the passive method of 
the RTSA what follows from the data presented in Fig. 3. 

In conclusion it should be pointed out that the described 
method for solving the problem of the complex RTSA enables 
one to make investigations in the field of synchronous 
ground–based, airborne, and the related experiments and to 
assimilate a priori data on the reconstructed temperature 
profile obtained by different physical methods into the 
processing of data of the passive RTSA. 

 

REFERENCES 
 

1. Ph. Russel and M.P. McCormic, Appl. Opt. 21, No. 9, 
1554–1563 (1982). 
2. K.Ya. Kondrat'ev and Yu.M. Timofeev, Thermal Sensing 
of the Atmosphere from Satellites (Gidrometeoizdat, 
Leningrad, 1970), 410 pp. 
3. K.Ya. Kondrat'ev and Yu.M. Timofeev, Meteorological 
Sounding of the Atmosphere from Outer Space 
(Gidrometeoizdat, Leningrad, 1978), 280 pp. 
4. I.E. Naats, Theory of Multifrequency Laser Sounding of 
the Atmosphere (Nauka, Novosibirsk, 1980), 157 pp. 
5. V.E. Zuev, B.P. Ivanenko, and I.E. Naats, Issled. Zemli 
iz Kosmosa 5, 119–121 (1985). 
6. O.M. Pokrovskii and Yu. M. Timofeev, Fiz. Atmos. 
Okeana 7, No. 1, 12–18 (1971). 
7. A. Ya. Tikhonov, Methods of Solving the Ill–Posed 
Problems (Nauka, Novosibirsk, 1979), 282 pp. 
8. Yu. M. Timofeev and D. Shpenkukh, in: Transactions of 
the International Symposium on Satellite Meteorology 
(Gidrometeoizdat, Leningrad, 1977), 21–33 pp. 
 
 

 
 


