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Effect of trajectory bending in calculations of shifts of the rovibrational lines of 
molecules is studied. The exact solutions of classical dynamic equations are used for 
calculating the second– order term of interruption function. The universal function of 
two arguments have been obtained which is independent of the parameters of potential 
and initial conditions of collision allowing one to take actual trajectories into 
consideration. 

 

Generally accepted approximation for calculating the 
integrals defining the resonance functions of the collisional 
theory of broadening and shift of spectral lines is the use of 
straight– line trajectories of relative motion of colliding 
particles.1–5 This approximation makes it possible to simplify 
calculations of integrals over time1 and is appropriate for 
"strong" collisions, when the long– range anisotropic portion 
of the intermolecular potential "interrupts" the process of 
absorption or emission at a relatively large value of the impact 
parameters. 

On the other hand, there is a number of examples when 
this approach introduces large errors into calculations of the 
coefficients of spectral line broadening. In Refs. 6– 8 the 
methods have been proposed to account for the trajectory 
bending within the framework of semiclassical collisional 
theory. These methods are based on the model representations 
of the trajectory and, in the approximation of effective 
straight– line trajectory, they result in the same resonance 
functions, but after certain redefinition of the parameters. 
Thus obtained corrections to the broadening coefficients turn 
out to be too large for weakly broadened lines.9 For this 
reason more detailed study is needed concerning the effect of 
the collisional bending of a trajectory for calculating the 
collisional parameters of the line shape. 

Bykov et al.10 studied the effect of the trajectory 
bending on calculation of the first– order summand of the 
interruption function determining shift of a rovibrational line 
in the shortwave region. The method is based on exact 
solutions of classical equations of motion, which, as is well 
known, can be easily obtained for an isotropic potential. In 
this paper the method is used for calculating the resonance 
functions of the electrostatic portion of the potential which 
determines the second– order terms of an interruption 
function. 

As is shown in Ref. 5, the resonance function fl1l2
 can be 

represented in the form of a sum of products of Fourier images 
of the intermolecular potential  
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Formula (1) defines the resonance function fl1l2 

for an 

individual summand in the multipole series expansion of the 
intermolecular potential; l1, l2 denote multipole character of 

the interaction; Pm
L(cosθ) are the associated Legendre 

polynomials; ωii' and ωjj' are the frequencies of virtual 

transitions in the absorbing and broadening molecules, 
respectively; r(t) is the distance between the molecules at 
the moment t, ϕ(t) and θ(t) are the azimuthal and polar 
angles. Relation (1) gives the resonance function the 
accuracy within to a constant factor. 

For calculating the integral over time in Eq. (2) let us 
specify the coordinate system as follows: (1) let the origin 
of coordinates be at the center of mass of colliding particles 
and (2) since some effective isotropic intermolecular 
potential will be used below for determining r(t), and as a 
consequence the trajectory will lie entirely in the same 
plane, let us choose the plane XY to be the plane where 
collisions occur, i.e., z(t) = 0, θ(t) = π/2. Then 
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The equation of motion for isotropic potential U(r) 

can be solved in the general form11 
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where rc is the distance of the closest approaching, 

E = μν2/2 is the kinetic energy of relative motion; ν is the 
initial velocity, μ is the reduced mass; b is the impact 
parameter; M = μbν is the angular momentum of the 
relative motion. Here the assumption is admitted that the 
moment and energy of relative motion are conserved. 

Like in Ref. 10, we shall use solutions of equations of 
motion (4) for transforming the integrals in Eq. (3). The 
values of constants c

1
 and c

2
 can be chosen so that the 

colliding particles approach most closely at the moment t = 0 
and for t = – ∞ the coordinate y is equal to – ∞ (the collision 
occurs "along the y axis"). In this case c

1
 = 0, while the value 

of c
2
 is nonessential for calculating the resonance functions. 

Let us introduce into Eqs. (3) and (4) the dimensionless 
variable y = r/rc and by substituting variables into the 

integrands we can represent Eq. (4) in the form 
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are the functions introduced in Ref. 10 and 
 
kc = 2πcrcω/υ ; (7) 

 
V(r) = 2U(r)/μυ2 . (8) 
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entering into the definition of the interrupting function1 
was omitted. The constant b must be chosen so that the 
value of resonance function at kc = 0 in the approximation 

of the straight– line trajectories would be equal to unity. 
The parameter kc, which is the analog of the Massey 

parameter, is determined in the same way as for the 
ordinary resonance functions except when b is replaced by 
rc. In deriving Eq. (5) the well– known relation  

 

b/r
c
 = 1 –  V(rc) , (9) 

 

was used which defines the turning point of the trajectory. 
Note that the result is independent of the integration 
constant. 

We can say that the resonance functions for 
electrostatic portion of the intermolecular potential given by 
formulas (5) and (6) account for actual trajectories, since  

they were deduced with any simplifying assumptions on the 
trajectory and they contain the intermolecular potential in 
its general form. Equation (5) enables one to calculate the 
resonance functions for any U(r), even for a numerically 
set, for example, for that calculated with the help of the 
quantum– chemical method. Like ordinary functions,1 these 
depend on the balance of energy at the moment of collision 
and vanish as k → ∞ (see Eqs. (5) and (6)). 

Resonance functions calculated in the approximation of 
the straight– line trajectories1 or in the approximation of "the 
effective rectilinear trajectories"6–8 are universal functions in 
the sense that they are explicitly independent of the 
parameters of trajectory and such quantities as the initial 
velocity v, impact parameter b, or parameter rc and determine 

the adiabatic parameter k, i.e., the argument of function, but 
not the function itself. Therefore, once being calculated and 
then tabulated, this function can be used in any other cases. 
At the same time formulas (5) and (6) defining the function 
itself contain rc and intermolecular potential, and, as a result, 

the resonance functions become dependent on the parameters 
of potential and the initial conditions of collision. However, 
for the case of model potentials (for example, the Lennard–
Jones potential) the "associated parameters of interaction"10 
can be introduced, that again makes functions (5) and (6) be 
"universal". In Ref. 7 it was found that for a model with 
parabolic trajectories the resonance functions depend on the 
ratio ν2

c/ν′2c , where νc is the velocity at the moment of 

maximum approach and ν′c is the effective velocity.7 

Use of different approximations for calculations of 
integrals in Eqs. (5) and (6) enables one to obtain different 
approximate relations for the resonance functions. 

The approximation of the straight– line trajectories is 
appropriate when U(r) = 0. In this case 
 

An(y) = y2 – 1 , A2(y) = argtan y2 – 1 , (10) 

 

and after the substitution of variables x = y2 – 1 one 
obtains ordinary equations for the resonance functions1,5 
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Next approximation that can be derived from 

Eqs. (5) and (6), is the approximation of "the effective 
rectilinear trajectories".7 To do this we expand U(yrc) 

from Eqs. (5) and (6) in a series over (1 – y2) powers 
around the point y = 1 and keep only the first term. It 
can be seen that we again obtain Eq. (8), in which the 
impact parameter b is replaced by rc and the velocity ν is 

replaced by ν′c = ν 1 –  V(rc) –  rcV′(rc)/2.  
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In concrete calculations the Lennard–Jones potential is 
normally used. 

 
U(r) = 4ε[(σ/rc)

12 –  (σ/r)6] . 

 
For this potential the quantities A0(y) and A2(y) take 

the form 
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where the dimensionless parameters λ = 8 ε/μv2 and β = σ/rc 

are introduced. 
The representation analogous to that in Eqs. (12) and 

(13) can be obtained for radicands from formula (5). In this 
case the resonance functions depend on three variables, that is, 
the adiabatic parameter k and "the reduced parameters of 
interaction" λ and β. It is obvious that the resonance 
functions, having been once calculated for different k, λ, and β 
and tabulated, can be used for any other molecule and 
different ε, σ, b, and v. Therefore resonance functions (5) like 
the functions obtained earlier in the approximation of the 
straight–line trajectories, can also be regarded as universal.  

It can be seen from formulas (5)– (13) that the region 
of fl1l2

 definition as functions of λ and β is connected with 

the classically permissible region of motion. As in Ref. 10 it 
can be shown here that the requirement of nonnegativity of 
radicands in Eqs. (5)– (13) is supplemented by the 
inequality y ≥ 1 (or z ≥ 1 for Eqs. (12) and (13)) that 
corresponds to the infinite trajectories. In so doing, as in  

Ref. 10, it is assumed that the finite trajectories, 
corresponding to the bound or metastable states do not 
contribute to the shifts and broadening of spectral lines. 

Thus, an account of the trajectory bendings does not 
alter the basic relations of the collision theory (within the 
framework of the admitted assumptions) but requires 
redefining of the resonance functions. In this connection, exact 
solutions of the equation of motion can be used without any 
model representation of the trajectory. New resonance 
functions exhibit "universality" because they depend on the 
"reduced parameters of interaction", i.e., λ and β. 

The authors thank Yu.N. Ponomarev for the numerous 
discussions concerning the role of the trajectory bending in 
the formation of the line shift. 
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