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An algorithm for separating the aerosol and molecular scattering components in 
multifrequency laser sensing of the upper atmosphere is considered. It is shown that 
the proposed algorithm is stable with respect to errors in the input data.  

 
Separation of the scattering components is an important 

and complicated problem in laser sounding of the atmosphere. 
This problem becomes particularly important in sounding of 
the upper layers of the atmosphere. The following two factors 
should be noted here. First, scattering on aerosol particles 
makes a contribution to the optical characteristics of the 
atmosphere which may be as large as the contribution of the 
molecular component.1 Therefore, the aerosol component of 
scattering should be taken into account. Second, the values of 
the optical characteristics of the upper atmosphere are very 
small. They are of the order of 10–2 or 10–3 km–1. It 
immediately follows that stringent requirements must be 
imposed on the accuracy of algorithms for separating the 
scattering components.  

As a rule, such algorithms are based on an a priori 
assignment of aerosol models.2 In this case the problem of 
separation is reduced to determining one or several (depending 
on the bulk of experimental information) normalizing factors. 
It stands to reason that the efficiency of such an approach is 
largely determined by the selection of the appropriate models. 
This approach is well justified for single–frequency sounding. 
However, if lidars with three or more operating wavelengths 
are used, then it is possible to develop more efficient 
algorithms for separating the aerosol and molecular 
components of scattering. Such algorithms call for a lesser 
amount of an a priori information.  

Recall that in sounding of the upper layers of the 
atmosphere the recorded signals are equal to  
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(strobe length).  
In general, system (1) consists of n equations and 

contains 2n unknowns. However, if we make use of an 
analytic expression defining the spectral behaviour of the 
molecular scattering coefficients, the number of unknowns 
may be reduced in this system. Really, the molecular 
backscattering coefficients can be represented in the form  
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where p(λi) is the fractional–rational function of the known 

form determined by the theory of molecular scattering. In 
general, it can be written down as 
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In Eq. (3) the refractive index of air is determined by the 
Edlen formula3  
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which holds at T

0
 = 288 K and P

0
 = 1013 nbar. As a result, 

the number of unknowns in system (1) is reduced to n + 1. 
It is possible to make the problem well defined at the 
expense of the aerosol component.4 This operation is correct 
since the signals form a set of interrelated values.  

Let us consider the algorithm for solving this problem. 
This algorithm is iterative. The shortest wavelength is 
separated out for determining the molecular component and 
the remaining n – 1 equations are considered. We write 
down these equations in the form  
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where h

0
 is the altitude at which the lidar has been 

calibrated, hl+1
 is the altitude of the preceding strobe at 

which all optical characteristics have been determined. 
Recall that the interpretation is made from above, i.e., 
h

0
 > hl+1 > hl . Solving then the inverse problem of aerosol 

light scattering in the form  
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we find the particle size distribution function s
a
(r). In 

Eq. (5), α is the regularization parameter, K
π
(λi, mi, r) are 

the backscattering efficiencies, and G(r, η) is the Green's 
function for the integrodifferential Euler equation. Since the 
structure of such algorithms has been studied extensively in 
Ref. 5, we do not dwell on these questions here.  

Having determined the particle size distribution 
function we next calculate any characteristic of aerosol light 
scattering. In particular, with a knowledge of the size 
distribution function we can calculate the aerosol extinction 
coefficient  
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and the square aerosol transmission 
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It is evident that the calculated values are the first 
approximation to the real values. The process is repeated 
starting with formula (4) until the condition  
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is satisfied, where j is the serial number of iteration.  
It should be noted that the process converges 

sufficiently rapidly. This is due to the fact that the 
exponential in Eq. (7) is close to unity.  

Knowing the particle size distribution function, it is 
possible to predict the aerosol optical characteristics for the 
particular wavelength. Let β 
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determines the zeroth approximation of the molecular 
component. The molecular scattering coefficient is found 
based on the well–known relation  
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Then we calculate the first approximation of the molecular 
transmission  
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and substitute it into Eq. (9). If the condition  
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is not satisfied, the process [starting with formula (9)] is 
repeated (κ is the serial number of iteration). It should be  

noted that this process converges rapidly as well, since the 
square transmission, determined from formula (11), is close 
to unity.  

In what follows formula (2) can be used to calculate 
the backscattering coefficient. Formulas (3) enable one to 
find the molecular scattering coefficients. Then, following 
the relation  
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we calculate the first approximation of the square molecular 
transmission. The difference  
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is formed, which represents the first approximation of the 
backscattering coefficient. If the condition  
 

⏐β 
m
π,

 
s
(λi, hl) – β 

m
π,

 
s–1

(λi, hl)⏐ ≤ δ
3
  (15) 

 
holds, the process is terminated, otherwise it is repeated 
starting with formula (5). As the numerical calculations 
show, from 5 to 7 iterations must be carried out for the 
given iterative process to converge. 
 

 
 

FIG. 1. Vertical profile of the backscattering coefficient 
at a wavelength of 0.339 μm. Dashed curve is for the 
exact distribution, solid curve is for the reconstructed one. 

 
To check the stability of the above–described algorithm, 

the numerical experiment was conducted. The microstructure 
model of the aerosol in the upper atmosphere was for 
Deirmendjian's H haze model.6 At altitudes of from 12 to 
18 km "perturbation" was introduced. Its microstructure 
obeyed the lognormal law.7 The refractive index of aerosol 
particles was taken to be 1.43 – 0 which corresponded to 75 % 
sulfuric acid.8 The molecular component was calculated for the 
model borrowed from Ref. 9. Results of numerical experiment 
are shown in Figs. 1 and 2. The results refer to the lidar 
operating at four wavelengths (λi = 0.339, 0.353, 0.532, and 

0.683 μm). Depicted in Fig. 1 is the altitude behaviour of the 
aerosol backscattering coefficient at a wavelength of 0.339 μm. 
It illustrates the systematic error. Peculiar feature of the 
algorithm is that the largest deviation of the exact coefficient 
from the reconstructed one is observed at the above–indicated 
wavelength.  



 

 
 

 
 

FIG. 2. Vertical profiles of the backscattering coefficients. 
 

As can be seen from Fig. 1, the deviation of the exact 
solution (dashed curve) from the reconstructed one (solid  

curve) increases with altitude decrease. It reaches 
maximum in the layer of aerosol perturbation. Figure 2 
illustrates the algorithmic stability. The altitude 
behaviour of aerosol (Fig. 2a) and molecular (Fig. 2b) 
backscattering coefficients at wavelengths of 0.339 μm 
(solid curve) and 0.683 μm (dashed curve) are shown in 
this figure. Plotted on the graph with dots are the 
backscattering coefficients derived with the 5 % error in 
the lidar returns. It follows from the figure that the 
additionally introduced error only slightly distorts the 
backscattering coefficients.  
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