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Three methods for inverting the lidar ozone data based on smoothing spline 
functions, regularization, and optimal parametrization are considered. The 
regularization method is shown to be inefficient for the number of gates more than 15. 
The possibility of employing the optimal parametrization method for processing of the 
lidar data is studied for the first time. The results of processing of the lidar returns 
from the stratosphere over Tomsk are given in this paper. 

 
INTRODUCTION 

 
Although the laser sounding of stratospheric ozone 

with an UV–bifrequency DIAL has been carrying out by a 
number of groups for about ten years,1–4 the problem of 
reliability of lidar data inversion has not yet been solved. 

The determination of the vertical profile of ozone content 
from lidar returns obtained with a bifrequency lidar is reduced 
to the problem of differentiation of the function f(z): 

 

f(z) = 
1
2 ln 

U
of(z)

Uon(z)
 + ψ(z) ; (1) 

 

ψ(z) = 
1
2 ln 

β
on(z)

βof(z)
 – (τon(z) – τof(z)) ,  

 
where Uof(z) and Uon(z) are the lidar returns at the 

distance z at the wavelengths λof and λon, βof(z) and βon(z) 

are the backscattering coefficients at the wavelengths λof 

and λon, and τon(z) and τof(z) are the optical thicknesses of 

molecular scattering and aerosol extinction. 
It is assumed in Eq. (1) that Uof(z) and Uon(z) are 

free of the signals of the atmospheric background radiation. 
The function ψ(z) is assigned starting from model 
representations or is determined from an independent 
experiment. 

The ozone concentration is defined as 
 

ρ(z) = 
1

2ΔK(z) Φ(z) , (2) 

 
where Φ(z) is the regularized analog of the derivative f′(z) 
of the function f(z) and ΔK is the differential cross section 
of the O3 absorption. 

It is well known5 that the problem of differentiating 
the experimental information is classified among the ill–
posed problems. This is manifested in the solution stability 
violation,6 i.e., insignificant errors in the initial data can 
lead to large errors in the solution (the solution gets loose) 
and, in some cases, to the occurance of negative magnitudes 
of gas concentration. 

At present, a number of methods7–17 are used for 
solving problem (10). In this paper we try to compare the 
three methods of inverting the function f(z): the method of 
spline function,7–8 the method of the Tikhonov's 
regularization,11–16 and the method of optimal 
parametrization. The third method has not yet been used for 
processing of the lidar ozone data, therefore the efficiency 
and conditions for applying this method are studied in our 
paper. 

 
1. THE METOD OF SPLINE FUNCTION 

 
This method is based on preliminary smoothing of the 

function f(z) and subsequent differentiation of the smoothed 
function. The method was first applied to processing of the 
data of lidar sounding of the H

2O vapor.7–8 A cubic spline 

was used for smoothing.18 The method to construct a 
smoothing spline was considered in detail in monographs 
(see, e.g., Ref. 19), therefore we shall give only a brief 
description of the basic relations. 

Let the function f(z) be preset by its measured values 
f(zi) = fi at the nodes of the grid zi:  

a = z1 < z2 < ... < zn–1 < zn = b. A smoothing cubic spline Snα 

is the solution of the variational problem 
 

F
α
 = inf 

⎩
⎨
⎧

⎭
⎬
⎫

α ⌡⌠
a

b

 
 
[S′′(z)]2dz + ∑

i=1

n

 pi[fi
 
–

 
Si]

2  ; (3) 

 
S(z) ∈ C2[a, b] 
 
and is represented on each segment hi = zi+1 – zi by the 

third–degree polynomial 
 

Snα = ai + bi(z – zi) + ci(z – zi)
2 + di(z – zi)

3 (4) 

 
with the continuous derivatives Sna′ (z) and Sna′′ (z). 

The spline coefficients a, b, c, and d are expressed in 
terms of the elements of the vector of the second–order 
derivatives Mi+1 = {m}i which are the solution of the system 

of linear equations 
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(αHP–1HT + A)m = Hf (5) 
 
with the boundary conditions M

1 = Mn = 0. 

Here α is the scalar (α > 0) which has the meaning of the 
smoothing parameter. The components of the matrices H and 
A are expressed in terms of the elements of the sequence 
hi = zi+1 – zi: 

 

Ai,i = (hi + hi+1)/3 , i = 1, ..., n – 2 ; 

Ai,i+1 = Ai+1,i = hi+1/6 , i = 1, ..., n – 3 ; 

Hi,i = 1/hi ; Hi,i+1 = – (1/hi + 1/hi+1) , i = 1, ..., n – 2 ; 

Hi,i+2 = 1/hi+1 , i = 1, ..., n – 2 ; 

 
where P is the diagonal matrix: P = diag{p1, ..., pn}. 

System (5) with the symmetric positively determined 
five–diagonal (n – 2)*(n – 2) matrix has a unique solution 
and is calculated by the pass technique.18 After finding the 
elements of the vector {m}i = Mi+1, i = 1, ..., n – 2, the spline 

coefficients Snα(z) are determined from the relations19 

 

ai = fi – {αF–1HTm}i ,  i = 1, ..., n ; 

bi = (ai+1 – ai)/hi – hi(2Mi + Mi+1)/6 ,  i = 1, ..., n – 1 ; 

ci = Mi/2 ,  di = (Mi+1 – Mi)/6hi , i = 1, ..., n – 1 . 

 
The accuracy of construction of the spline Snα(z) 

depends strongly on the value of the smoothing parameter. 
At present, there are different criteria for searching α (see 
Ref. 19). We use here three criteria: optimal, statistical 
principle of discrepancy, and a criterion of discrepancy. All 
of these criteria preassume the knowledge of the error in the 
measurement of the function f(z). At the same time, the 
first two criteria require the information about the 
measurement error at each node z, while the third criterion 
requires that the averaged error for the entire range [z

1, zn] 

be known. There also exists a criterion for selecting α in the 
case of the unknown matrix of the measurement noise.8,19  

The method of spline functions as applied to the 
solution of problem (1) was further developed in Ref. 10, 
where the procedure for constructing the descriptive cubic 
splines was suggested. The advantage of this approach is the 
possible application of an a priori information about f′(z) in 
the form of inequalities (e.g., f′′(z)) > 0). 

 
2. THE REGULARIZATION METHOD 

 
The Tikhonov regularization method for processing the 

lidar data was first used in Ref. 11 for solving the problem 
of sounding of the tropospheric humidity. In their 
subsequent papers12–15 the authors suggested that the lidar 
returns be processed separately for each wavelength. As 
applied to the solution of problem (1), the technique of 
calculation of the derivative Φ(z) =

 
f′(z) has the form14,15 

 

Φ(z) = 
1
2 [(lnUof(z))′ – (lnUon(z))′] + ψ′(z) , (6) 

 
where the regularized analogs obtained from the solution of 
the Fredholm equation of the first kind are used as (lnU

of(z))′ 

and (lnUon(z))′. This approach, in spite of the twofold  

increase of computation time, turns out to be useful in 
processing of the integrated lidar returns at the wavelengths 
λof and λon individually. In our problem we propose 

simultaneous integration of signals at two wavelengths; 
therefore, f(z) related to the measured lidar returns via 
relation (1) is used as a processable function. 

The regularized solution Φ(z) = f′(z) for problem (1) is 
determined from the Fredholm equation of the first kind 
 

⌡⌠
a

b

 
 K(x, z) Φ(z) dz = g(x) ; (7) 

 

g(x) = ⌡⌠
x

b

 
 f(y) dy – f(a)(b – x) ; (8) 

 

K(x, z) = {  b – x , x ≥ z 
b – z , x < z .  . (9) 

 
The transformation to algebraic form (7) is 

accomplished for the uniformly spaced grid with the step 
h = zi+1 – zi. The formula of rectangles on a grid displaced 

at h/2 is used as a numerical quadrature. The algebraic 
analog in a matrix form is  

 
KΦ = g , (10) 
 
where k is the (n – 1)*(n – 1) matrix with the elements 
 

K(x, z) = {  b – a – h(i – 0.5), i ≥ j 
b – a – h(j – 0.5), i < j ,  

 
Φ is the (n – 1) – dimensional vector of the derivative f′(z) 
which is assigned at the nodes of the grid zi + h/2, g is the 

(n – 1) – dimensional vector of the right side determined at 
the nodes of the displaced grid. 

The regularized solution of problem (10) with the use 
of a first–order stabilizer is written down in the form6 
 
Φ

α
 = (KTK + αB)–1KTg , (11) 

 

where β is the finite–dimensional analog of the stabilizer 
derivative which has the form of a tridiagonal (n – 1)*(n – 1) 
matrix with the elements 
 

B11 = p1 + q1/h2 ;  Bn–1,n–1 = pn–1 + qn-1/h2 ; 

Bii = pi + (qi+1 + qi)/h2 , i = 2, ..., n – 2 ; 

Bi,i+1 = Bi+1,i = – qi/h2 , i = 1, ..., n – 1 ; 
 

where pi and qi are the weighting functions p(z) and q(z) at 

the nodes of the grid zi. 

The unknown parameter α (the regularization 
parameter) enters into Eq. (1). In our paper the parameter α 
is chosen against one of the two criteria: discrepancy or 
statistical discrepancy. 

 
3. METHOD OF OPTIMAL PARAMETRIZATION 

 
This method is widely used for solving the problems of 

spaceborne sounding of the atmosphere (see, e.g., Ref. 21). 
Let us consider its possible applications to the problem of lidar 
sounding of ozone. 
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The unknown function Φ(z) = f′(z) is represented in 
the form 

Φ(z) = Φ
–

(z)
 
+ Φ~(z) , (12) 

 

where Φ
–

(z) is the mean value of the function derived from 

the data of long standing and Φ~(z) is the deviation from the 
mean value. 

Upon substituting Eq. (12) into Eq. (7), we obtain 
 

⌡⌠
a

b

 
 K(x, z) Φ~(z) dz = g~(x) ; (13) 

 

g~(x) = g(x) – ⌡⌠
a

b

 
 K(x, z) Φ(z) dz . (14) 

 

The unknown function here is Φ~(z). The regularized 

solution of Eq. (11) with the right side g~(x) can be used as 

Φ
~(z). Such an approach was employed in Ref. 16, in which 

the profile KO3
(z) ⋅ ρ–(z) of the Krueger model was taken as 

Φ
–

(z). Here K
O3

 is the ozone absorptional cross section and 

ρ–(z) is the average profile of ozone. 

However, the solution of Φ
~(z) can be found 

differently. Let us assume that in addition to the mean 

value Φ
–

(z) = K
O3

(z)ρ–(z), the empirical eigenvectors of 

ozone tk(z), k = 1, ..., m are also known. We now expand 

Φ(z) into a series in the system tk(z) 
 

F~(z) = KO3
(z) ∑

k=1

m

 bktk(z) . (15) 

 

The optimal parametrization means that this system 
with the preset number of eigenvectors tk(z), provides 

minimum variance of the residual term of the expansion 
compared to any other orthonormalized system of 
functions.20 In practice, the first eigenvectors corresponding 
to the maximum eigenvalues are used as a rule. Thus, for 
the humidity profile it is sufficient to use two or three first 
eigenvectors, and the residual variance will be < 10% (see 
Ref. 10). For ozone, it is necessary to substitute into 
Eq. (15) from six to eight vectors to provide the variance of 
the residual term ≈ (5–8)% (see Refs. 22 and 23), i.e., of m 

vectors it is sufficient to take m~ = 6–8 vectors tk(z). 

By substituting Eq. (15) into Eq. (13), we obtain the 
system of linear equations for the unknown coefficients bk  

 

∑
k=1

m~

 Rikbk = g~i , (16) 

 
where 

Rik = ∑
j=1

n–1

 Kijtk(j) ,  k = 1, ... , m~  . 

 
Solution (16) obtained by the least–squares technique 

is given in the form 
 

b = (RTR)–1RTg~ . (17) 
 

Here we have the system of linear equations in m 
unknowns. Having calculated the coefficients bk from 

Eq. (17) we can reconstruct Φ(z) using formulas (15) and 
(12). 

It should be noted that the method for optimal 
parametrization does not provide the stable solution of the 
inverse problem. Therefore, in addition to Eq. (17), we also 
consider the regularized solution 

 

bα = (RTR + αI)–1RTg~ (18) 
 

with insignificant distortion of the matrix of the system 
(α = 10–6) which makes it possible to obtain a stable 
solution in all numerical experiments given that the noise 
level δ ≤ 0.1. 
 

4. NUMERICAL EXPERIMENT 

 
A comparison between the spline–function and 

regularization methods was made at the first stage of 
numerical simulation. For the numerical simulation the 
following function was chosen 
 

Φ(x) = exp{– ln(2) ((x – 0.5)/0.25)2}  

using it we calculated the function f(z)

 

= ⌡⌠
0

z

 Φ(x) dx. To 

imitate the measurement noise, the values of the function 
f(x) at the nodes zi, i = 1, ..., n were distorted with the use 

of the generator of normally random variables whose 
variance was equal to σ2

i = δ2
⋅ f 

2
i, where δ is the relative 

error (the measurement noise). 
Let us now analyze the results of numerical 

experiments on comparison of the solutions Φ
sp and Φreg 

obtained using a cubic smoothing spline (sp) and the 
Tikhonov regularization method (reg). The smoothing and 
regularization parameters in both methods were determined 
against the criterion of statistical discrepancy. The number 
of nodes n increased from 10 to 40 . 

Depicted in Fig. 1 are the results of reconstructing Φ
sp 

(curve 2) and Φreg (curve 3) for different number of nodes 

and the noise levels δ = 0 and 1%. The rigorous solution Φ 
(curve 1) is also presented here for comparison. As the 
number of nodes n increases, the error in the reconstruction 
of Φreg increases faster than the error in the reconstruction 

of Φsp does. Thus, when the number of nodes n = 30 even 

for the zeroth noise level we observed ripples in the solution 
Φreg (Fig. 1c), and when n = 40 the solution Φreg got loose 

(Fig. 1d). 
The efforts to improve the solution Φreg by varying α 

did not provide the desired result. One of the approach to 
improve the solution Φreg is probably the refinement of the 

algorithm or the use of a computer with a longer word 
length (we used PC/AT–286). The other method to 
improve the solution Φ

reg is to change the weighting 

functions p(x) and g(x) in the matrix B (see Eq. (11)). In 
our numerical experiment these function were set equal to 
unity. In practice, it is most expedient to reconstruct Φreg 

on a more widely spaced grid with the number of nodes, at 
which the solution is found, not more than 15. As can be 
seen from Fig. 1 as well as from the results of simulation 

for different noise levels, the solution Φ
sp is found stably 

for any number of nodes and any noise level up to 5%.  
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By means of numerical simulation we study the effect of 
the noise model on the solution stability. In addition to a 
"normal" noise we simulated the perturabation of the f(z) 
function by a periodic noise (an alternating one). Figure 1h 
shows one of instances of reconstructing Φsp and Φreg for 

n = 30 and for alternating noise at the level of 10%.  

It can be seen that Φsp is stable while Φreg starts to get loose 

at the last three points. It should be noted that a periodic 
noise is filtered much better than a conventionally  
normal noise. Due to this fact it becomes possible  
to obtain stable solutions Φ

sp and Φreg even for a noise level of 

30%. 
 

 
 

FIG. 1. Comparison of the model function reconstruction using the spline–function and regularization methods. 1) exact 
function, 2) reconstruction by the spline–function method, 3) reconstruction by the regularization method,  
a – d) 0% error; e – g) 1% error; and h) 10% error. 
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Let us now proceed to a numerical simulation of the 
efficiency of the optimal parametrization method. To do 
this, let us make use of the statistical information about the 
average content of ozone PO3

(z) and the covariation matrix 

C
O3

(z, z′) derived at the Institute of Atmospheric Optics23 

from the radiozonde data obtained at the station Gus–Bei. 
Based on the initial matrix C

O3
 we constructed the 

eigenvectors tk(z) and calculated the eigenvalues μk, for 

k = 1, ..., 27. 
The inverse problem was simulated according to the 

following scheme: 
1) The coefficients bk for k = 1, ..., 27 were simulated 

with the help of the generator of random variables with the 
parameters (0, μk). 

2) A random component of the ozone pressure profile  

P~
O3

(z) was calculated from Eq. (15) and then a random 

ozone profile P
O3

(z) = P~O3
(z)) + P

–
O3

(z) was calculated. 

4) The optical depth f(z) = ⌡⌠
0

z

 Φ(y) dy was calculated. 

5) The values of f(z) so obtained at the nodes z were 
distorted with the help of a random generator of variables 
for simulating the measurement noise. Thus at this stage of 
simulation the function 

 

f~(z) = f(z) + ξ(z) 
 
was taken as a measured function, where ξ stands for a 
random component. 

6) The function 
 

g~(z) = g(x) – ⌡⌠
a

b

 
 K(x, z) F

–
(z) dz , 

 

was formed, where Φ~(z) =
 
KO3

⋅ P
–

O3
(z). The grid over the 

variables x and z was taken uniformely spaced with a step 
of 0.5 km. 

7) Inverse problem (18) was solved for ba
k and the profile 

 

Φop(x) = Φ
–

(z) + KO3
(z) ∑

k=1

8

 bk
αtk(z) 

 

was reconstructed.  
In practice no statistical information about vertical 

correlations of ozone is available for a geographic site of lidar 
location. Therefore it is of great importance to study the 
efficiency of the optimal parametrization method not only 
with "its own" but with a "foreign" system of eigenvectors. 
The statistical ozone model at midlatitude was taken as a 
"foreign" system of eigenvectors for the Gus–Bei station.25 

Figures 2a and 2b depict the results of reconstruction 
of Φsp(z) for "its own" (curve 2) and "foreign" (curve 3) 

systems of eigenvectors for two experimental schemes. In 
Fig. 2a the function f(z) was considered to be known for 
the entire range of altitudes from 0 to 30 km (a = 0). In 
Fig. 2b the minimum altitude was a = 9 km, i.e., f(z) was 
"measured" between 9 and 30 km. 

The suggested scheme of the numerical experiment 
with different minimum altitudes a enabled us to analyze 
the possibility of reconstructing the ozone content profile in  

the troposphere from the data of sounding of stratospheric 
ozone. It can be seen from Figs. 2a and b that it is possible 
to determine the ozone profile for the entire range of 
altitudes from 0 to 30 km from the data on f(z), while the 
information about f(z) above 9.5 km (in the numerical 
experiment in addition to a = 9 km, the minimum altitudes 
a = 9.5 and 10 km were also considered) does not allow the 
ozone profile in the troposphere to be reconstructed with 
sufficient accuracy. This is due to the fact that in the  
9–10–km layer (Gus–Bei station) there exists an ozone pause. 
In the ozone–pause layer the sign of correlation changes. For 
the other regions the ozone–pause altitude can differ. 

The third stage of simulating the problem of lidar 
sounding of ozone was accomplished based on the simulated 
lidar returns according to the following scheme: 

1) Typical parameters of the lidar system operating on 
the basis of the induced Raman scattering conversion of the 
radiation with a wavelength of 308 nm into the radiation with 
a wavelength of 353 nm were prescribed as follows: 
λ
on = 308 nm, Eon

0  = 56 mJ, A = 0.785 m2, ΔH = 0.4 km 

(strobe length), qon = qof = 8.575⋅10–4 (lidar efficiency 

including a receiving–transmitting optical train, quantum 
yield of the photomultiplier, efficiency of the receiving 
aperture, transmission of the filter, and other losses), 
λ
of = 353 nm, and Eof

0  = 20 mJ. The model coefficients of 

molecular scattering, aerosol extinction, and backscattering 
were borrowed from Ref. 25. The ozone absorption coefficients 
K

O3
 = 1.19⋅10–19 cm2 at λon = 308 nm (see Ref. 24). 

2) The random ozone profile and the optical depth of 
ozone at λ

on and λof (see items 1–4 of the second stage of 

simulation) were simulated from the data obtained at the 
station Gus–Bei. 

3) The lidar returns U
on and Uof were calculated with 

an altitude step of 0.4 km for a single pulse within the 0–
30 km altitude range with the use of the lidar equation in 
the single–scattering approximation. 

4) The obtained signals were distorted with the help of 
the generator of random variables with the parameters 
(0, U

on/n) and (0, Uof/n), where n is the number of pulses. 

5) The function f(z) was calculated using Eq. (1) 
starting from an altitude of 9 km. It was then used as a 
"measured" function. 

6) The inverse problem was solved using the three 
above–described methods and the solutions Φ

sp, Φreg, and 

Φop were found. The solution Φop was obtained using both 

"its own" and "foreign" systems of eigenvectors 
corresponding to the averaged zonal model for the 
midlatitudes.21 

Depicted in Figs. 2c and d is the intercomparison of 

the solutions Φsp, Φreg, and Φop. Figures 2c and d shows the 

solution Φsp (curve 2) and Φreg (curve 3) for 100 and 10 000 

pulses at a = 9 km as well as an exact profile of the ozone 

absorption oefficient (curve 1). The solution Φreg was 

obtained with spatial resolution ΔH = 1.2 km at 14 points 
though the function f(z) was known with spatial resolution 
ΔH = 0.4 km at 42 points in the 9–30 km altitude range. 
As was shown above, for the large number of nodes the loss 
of stability in reconstructing the unknown function by the 
regularization method occurs. As can be seen from the 
figures, for the stable reconstruction of the ozone profile the 
signals must be integrated over a longer period of time. 

Figures 2e and f show the intercomparison of the 
solutions Φop for "its own" (curve 2) and "foreign" (curve 3) 

systems of eigenvalues for a single pulse (Fig. 2e) and 1000  
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pulses (Fig. 2f) at a = 9 km compared with the exact 
profile (curve 1). As can be seen from the figures,  
the signal integration significantly improves the  
quality of ozone profile reconstruction for both "its  
 

own" and "foreign" systems of eigenvectors. To 
reconstruct these profiles when solving the system of 
equations, the parameter α was taken to be 10–6 (see 
Eq. (18)). 

 

 
 

FIG. 2. Results of the solution of the inverse problem by different methods: a and b) reconstruction of the profile α
O3 

by 

the optimal parametrization method based on "its own" (curve 2) and "foreign" (curve 3) systems of eigenvectors. The 
optical depth is taken as a "measured" function. Curve 1 is for the rigorous solution. c – f) reconstruction of α

O3 
based on 

model lidar returns: c and d) the spline–function (curve 2) and regularization (curve 3) methods; e and f) the optimal 
parametrization method. 

 
5. THE RESULTS OF PROCESSING THE LIDAR DATA 

 

The lidar data on sounding of the stratospheric ozone 
over Tomsk were obtained in summer as part of the 
SATOR program on July 6, 8, 9, 11, 14, 20, 22, and 24, 
1991. At some nights we obtained several runs of ozone 
sounding. 

The laser sounding of the stratospheric ozone was 
carried out using a lidar with a 1–m receiving mirror and 
a Xe–Cl laser equipped with the converter of laser 
radiation intensity based on the effect of the induced 
Raman scattering on H

2. Blockdiagram of the lidar 

(Fig. 3) has the following basic parameters: the laser 
pulsewidth was 10 ns and the laser pulse repetition 
frequency was 70 Hz at λ

on = 308 nm and λof = 353 nm 

and the laser pulse energy was 60 and 8 mJ, respectively. 
The signals were recorded in the photocurrent pulse 
counting regime with gating for the gate length of 
g 2.5 μs (Δz g 375 m). The time of lidar signal 
integration over single sounding cycle was 30 min. 

To process the real data, we employed the spline–
function method. This method was chosen due to its 
highest stability with respect to the errors in the input 
data for any number of nodes. As was shown above, the 
regularization method is instable for the large number of 
nodes and inefficient because if requires much 
computational time. The decrease of the number of nodes 
improves the solution stability but, in this case, spatial 
resolution deteriorates. At present it is impossible to use 
the optimal parametrization method for processing of the 
real data due to the lack of the statistical data on the 
average ozone content over Tomsk. The use of the 
"foreign" average profile can lead to uncontrolled errors 
in reconstructing the ozone profile from the lidar data. 

Figure 4a depicts the vertical ozone profiles 
reconstructed from the lidar returns obtained in July using 
cubic splines in the 15–25 km altitude range. Maximum of the 
ozone layer is seen to be located within the 19–21 km altitude 
range and this is in agreement with physical concept of the 
ozone layer at midlatitudes.26 
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FIG. 3. Block diagram of an ozone bifrequency lidar: 1, 2, 3, and 4) rotating mirrors; ,l1,...,l5 denote focusing and 

collimating lenses; d denotes dichroic mirror, Ra denotes a receiving mirror 1 m in diameter; XeCl denotes an excimer 

laser, H2 denotes a high–pressure (16 atm) hydrogen cell with induced Raman scattering. 
 

 
 

FIG. 4. Ozone profiles reconstructed from lidar returns obtained at different time (a) and relative variation of the total 
ozone content in the 16–23 km altitude range (b). 
 

It should be noted that the variations of the ozone 
content in stratospheric maximum over the period of 
observations were very significant. Thus, e.g., an integral 
ozone content in the 16–23 km altitude range decreased by 
more than a factor of two from July 6 to July 9 (see Fig. 4b). 
At the same time, the dynamic variations were observed even 
at one night. Figure 5 shows four ozone profiles measured 
during less than two hours at night on July 11. A dashed line 
in this figure shows the standard deviation of the recorded 
profiles from the average one over the entire night period of 
observations. 

 

 
 

FIG. 5. Ozone profiles obtained during four runs at one night 
(a) and standard deviation about the average profile (b). 

In accordance with the analysis of stratospheric 
weather maps over the indicated period of lidar 
observations, the air masses of subtropic origin were 
injected into the midlatitudes (this synoptic situation is 
described in the present issue). As is well known, at these 
altitudes in tropics there is an ozone pause with a 
depleted content of ozone. Thus, the results of the lidar 
observations of transformation of ozone profiles obtained 
in July are in a good agreement with synoptic data as 
well as with the data on ozone "depression" caused by the 
Pinatubo volcano eruption. Strong variations in ozone 
profiles at one night are most likely caused by dinamic 
variations of horizontal displacements of air. 

In conclusion, the authors would like to thank 
S.A. Mikhailov for his kindly given data on the ozone 
covariation matrix obtained at the Gus–Bei station. 
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