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Conditions that are sufficient for obtaining a unique solution of phase problem 
are considered. The Hilbert equations were generalized for a two–dimensional case. A 
possibility of obtaining an analytical solution of the problem is shown for a two–
dimensional discrete case. Unambiguity of solution is considered in a two–dimensional 
continuous case.  

 
As follows from the general analysis of unambiguity 

of the phase problem solution (Part I) this problem has 
no unique solution, if an unknown distribution (image) to 
be reconstructed can be represented (one–dimensional 
case) or inherently is a convolution of two or more images 
(two–dimensional case). To provide a unique 
reconstruction of the image in this case it is necessary to 
use an additional information. It seems to be most natural 
to use a preliminary exponential filtration of an image. 
The exponential function "penetrates" into the 
convolution integrand and exponentially filtered 
convolution is equal to the convolution of filtered images. 
Exponential filtration is also necessary when deriving an 
analytical solutions with the help of the Hilbert 
transforms because it shifts the bands of the roots in the 
complex plane and makes it possible to establish one–to–
one relation between the modulus and the phase.  

 
CONDITIONS SUFFICIENT FOR OBTAINING A 

UNIQUE SOLUTION OF THE PHASE PROBLEM  
 
Let the image J

1
(t)  

 
J

1
(t) = J(t) exp(– γt) , (1) 

 
where γ = (γ

1
, γ

2
) is the filtration vector, be called the 

exponentially filtered analog (EA) of the image J(t).  
Let us consider the simplest case to demonstrate the 

possibilities of exponential filtration. In a one–dimensional 
case the Fourier transform f

1
(x) of the EA of an image has 

the form  
 

f
1
(x) = F

∧
{J

1
} = ⌡⌠

–∞

+∞

 J(t) e-γt
 eixt dt = A

1
(x) e

iϕ
1
(x)

 , (2) 

 
where all designations are the same as in Eq. (1) (Part I). 
At small γ < 1/S we can expand the exponential function 
into a series and two first terms of which are  
 

f
1
(x) ≈ f(x) + iγ 

df(x)
dx  , 

 
where f(x) is the Fourier transform of the image J(t). 
Equalizing the modules we obtain the approximate relation  
 

A
1
(x) ≈ A(x) { }1 – γ 

dϕ(x)
dx  . (3) 

 

So, once two modules of the spectrum A
1
(x) and A(x) 

and the filtration coefficient γ are known one can 
approximately reconstruct the derivative of the phase ϕ′(x) 
and, consequently, the phase itself (ϕ(0) = 0).  

An analogous consideration of a two–dimensional case 
can be easily carried out. Introducing two EA's of a two–
dimensional image as  

 

J
2
(t

1
, t

2
) = J(t

1
, t

2
) exp(– γ

1
t
1
) , 

 

J
3
(t

1
, t

2
) = J(t

1
, t

2
) exp(– γ

2
t
2
) , 

 

then making their Fourier transforms, and expanding the 
exponential function into a series (γ

1
, γ

2
 < 1/S), and finally 

equalizing the modules we obtain the approximate relations  
 

A
2
(x

1
, x

2
) ≈ A(x

1
, x

2
) 
⎩
⎨
⎧

⎭
⎬
⎫

1 – γ
1
 

dϕ(x
1
, x

2
)

dx
1

 ; 

 

A
3
(x

1
, x

2
) ≈ A(x

1
, x

2
) 
⎩
⎨
⎧

⎭
⎬
⎫

1 – γ
2
 

dϕ(x
1
, x

2
)

dx
2

 . (4) 

 

Thus, knowing three modules of the Fourier spectrum 
A

3
, A

2
, and A and γ

1
, γ

2
 we can reconstruct two partial 

derivatives of the phase ϕ
x1

 and ϕ
x2

. Then by integrating and 

joining these derivatives we can find an approximation of the 
function ϕ(x

1
, x

2
). Generalization of these results to the case 

of arbitrary vectors of filtration we formulate in the form of 
the following statements.  

Statement 1. Let J(t) be the finite function within the 
region S. Then J(t) can be unambiguously determined by the 
modulus of its Fourier spectrum and by the modulus of its EA 
spectrum.1  

Statement 2. Let J(t) be the finite function within the 
region S. Then J(t) is completely determined by the modulus 
of the Fourier spectrum and by the modules of the Fourier 
spectra of two its EA's, the filtration vectors of which are 
orthogonal.  

The proof of Statement 2 is analogous to the proof of 
Statement 1. It is based on factorization of the spectrum1 with 
respect to each variable.  

A more detailed analysis shows that the orthogonality of 
the filtration vectors is an unnecessary condition.  

Statement 3. Let J(t) be the finite function within the 
region S. Then, J(t) can be unambiguously determined by the 
Fourier spectrum modulus and the modules of the Fourier  
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spectra of two its EA's the filtration vectors of which are 
noncollinear.2  

It should be noted that the term exponential filtration 
can in fact be omitted, since the definition of the Fourier 
transform of an EA of image (1) completely coincides with the 
generalized definition of the Laplace transform L(p) (see 
Ref. 3) for p = – γ + ix, with the generalized Fourier 
transform f(w) for w = x + iγ (see Part I), and with the 
definition of the integral exponential function,4 as well.  

However, many different terms can make a confusion, 
therefore, below we shall follow the above–introduced 
terminology.  

As shown in Part 1, a two–dimensional discrete case of 
the phase problem can be reduced to a one–dimensional case 
with the help of a line–by–line (or column–by–column) 
elongation of the image. Thus, a filtration of the two–
dimensional image with the filtration vector, which is 
transformed into a quasi–continuous one–dimensional 
filtration during the elongation process, creates conditions 
corresponding to Statement 1.  

Let us consider a technique of a line–by–line elongation 
without zeroes for a two–dimensional EA of the image of the 
following form: Jn1, n2

exp(– γ
1
n

1
 – γ

2
n

2
).  

Let us now put in correspondence to it a one–
dimensional EA of the image Inexp(– γ

0
n) according to the 

rule  
 

Jn
1
, n

2
exp(– γ

1
n

1
 – γ

2
n

2
) = Inexp(– γ

0
n) at n = n

1
 + n

2
(N

1
 + 1). 

 

By equalizing the arguments of the exponential functions 
and taking into account the elongation rule we find that 
γ
1
 = γ

0
, γ

2
 = γ

0
(N

1
 + 1).  

Thus, the vector of a two–dimensional filtration that is 
being transformed in a quasi–continuous one–dimensional 
filtration has the form  
 

γ = {γ
0
, (N

1
 + 1)γ

0
} . (5) 

 

Statement 4. A two–dimensional discrete image Jn1, n2
 is 

completely determined by the modulus of the Fourier spectrum 
and modulus of the Fourier spectrum of its EA with the 
specially chosen filtration vector γ of the form (5) (γ

0
 is an 

arbitrary vector).  
 

THE HILBERT EQUATIONS  
 
An analytical relation of the modulus to the phase in a 

one–dimensional continuous case can be described by the so–
called generalized Hilbert transforms,5 which can be obtained 
by applying the Cauchy formula with the integration contour 
shown in Fig. 1a, to the function lnf(w)/w. Since f(w) can 
contain zeroes in the upper half–plane, lnf(w) is not an 
analytical function in this case what makes the Cauchy 
formula inapplicable to it. However, f(w) can be "corrected" 
so that its absolute keeps the same everywhere on the real axis 
(w = x), while f(w) ≠ 0 at y > 0, i.e.,  

 

f′(w) = f(w) ∏
k

 
w – wk*

w – wk
 , 

 

where wk are the roots of the equation f(w) = 0 in the 

upper half–plane (y > 0), while f′(w) is a new function 
satisfying the conditions ⏐f′(w)⏐ = ⏐f(w)⏐ 

⎝
⎜
⎛

⎠
⎟
⎞

because 
x – w*k
x – wk

 = 1  and f′(w) ≠ 0 at y > 0. 

As a result we have  
 

ϕ(x) = – 
1
π v.p. 

⌡
⌠

–∞

+∞

 

 

lnA(ξ)
ξ – x dξ – ∑

k

 
 
arg 

x – wk*

x – wk
 ; (6) 

 

lnA(x) = 
x
π v.p. 

⌡
⌠

–∞

+∞

 

 

ϕ(ξ) dξ
ξ(ξ – x)

 + 

 

+ 
x
π ∑

k

 
 
arg v.p. 

⌡
⌠

–∞

+∞

 

 ⎝
⎛

⎠
⎞ξ – wk*

ξ – wk
 

dξ
ξ(ξ – x)

 . (7) 

 
Equations (6) and (7) were called the generalized Hilbert 
transforms relating the modulus and phase of the Fourier 
spectrum of a finite function. Usually, Eq. (6) is called the 
total phase while the first and the second terms are called 
the minimum phase and the Blyashke phase, respectively. In 
this case any of the Blyashke phase components can be 

changed for the reciprocal one: 
x – w*k
x – wk

 → 
x – wk

x – w*k
 that 

corresponds to the transfer of a root from the lower half–
plane in the upper one (the spectrum modulus does not 
change in this case). This results in the total number of 
solutions of the phase problem to be ∼ 2N – 1 where N is the 
number of the roots of f(w).  
 

 
 
FIG. 1. Integration contour for constructing the Hilbert 
transforms in the continuous case (a) and in the discrete 
case (b).  
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An account of the specific properties of a discrete case 
means a transition to consideration of z transforms of the 
image. Application of the Cauchy formula to the function 
lnRJ(z)/z under the assumption of the absence of zeroes in 

the upper half–plane of w–plane (for the z–plane this 
means the absence of zeroes at ⏐z⏐ ≤ 1), and for the 
integration contour shown in Fig. 1b, results in6  
 

ϕ(x) = – 
1
2π v.p. 

⌡
⌠

–π

π

 

 
ln A(ξ) cot 

ξ – x
2 dξ ; (8) 

 

ln A(x) = 
1
2π v.p. 

⌡
⌠

–π

π

 

 
ϕ(ξ) { }cot 

ξ – x
2  – cot 

ξ
2 dξ . (9) 

 

The form of the Blyashke–phase analogs in the 
discrete case is not of interest, since the ambiguity remains, 
as previously. The relation between the modulus and the 
phase becomes unique and analytical, provided that all roots 
of f(w) are either in one of the half–planes (upper y > 0 or 
lower y < 0) or on the real axis (y = 0).  

Analogously, in the discrete case all roots of RJ(z) 

have to be either within the circle ⏐z⏐ ≤ 1 or in the region 
⏐z⏐ ≥ 1, or exactly on the circle ⏐z⏐ = 1.  

Analysis of the behavior of the roots in the discrete 
case shows that in the w–plane the roots are within a band 
of a finite width comprising the real axis. The proof of this 
fact results from the following statement.7,8  

Statement 5. A finite succession of the form 

Π(l) = ∑
n=0

N
 anl

n is nonzero for ⏐l⏐ ≤ 
⎝
⎜
⎛

⎠
⎟
⎞

1 + 

max
n>k+1

⏐an⏐

⏐ak⏐

–1

, 

where ak is the first nonvanishing element from {an}.  

Consequence. For the discrete image Jn the roots {wk} 

of the equation f(w) = 0 are within the band of a finite 
width parallel to the real x axis. For J

0
 and J

N
 ≠ 0 the 

equation of the band is given by the inequalities  
 

– β
0
 ≤ y ≤ α

0
 , ∀x; α

0
 = ln

⎩
⎨
⎧

⎭
⎬
⎫

1 + 
J

max

J
0

 , β
0
 = ln

⎩
⎨
⎧

⎭
⎬
⎫

1 + 
J

max

JN
 . 

 
In the z–plane the roots  

 

⎝
⎛

⎠
⎞1 + 

J
max

J
0

-1

 ≤ ⏐z⏐ ≤ 
⎝
⎛

⎠
⎞1 + 

J
max

JN
 

 
are in the ring comprising the unit circle.  

This consequence makes it possible to find an 
analytical solution of the phase problem through the 
minimum–phase relations.  

Let us consider the EA of the image Jn′ = Jnexp(– α
0
n). 

Then,  
 

f(w) = ∑
n=0

N

 Jne
-α

0
n
ei(x + iy)n = ∑

n=0

N

 Jne
–y′neixn , 

 
where y′ = y + α

0
. In this case for f′(w) the real axis x 

"will be lifted upward" by the value α
0
 (the roots remain 

below). This means that for y′ > 0 f′(w) = 0, i.e., the 
relation between the modulus and phase can be described 

either by Eqs. (8) and (9), or by the first terms of Eqs. (6) 
and (7).  

It is natural that for developing such a solution it is 
necessary to know an a priori unknown coefficient α

0
 which, 

however for the typically low–contrast images 
⎝
⎛

⎠
⎞J

max

J
min

 ∼ 100  

can always be taken a little bit greater than its actual value.  
Generalization of this result for a two–dimensional case 

leads to the corresponding generalization of the Hilbert 
transforms. In a two–dimensional continuous case, first, it is 
necessary to apply the Cauchy formula, with the integration 

contour shown in (Fig. 1a), to the function 
lnf(w

1
, 0)

w
1

 and 

then to 
lnf(x

1
, w

2
)

w
2

 or first to 
lnf(0, w

2
)

w
2

 and then to 

lnf(w
1
, x

2
)

w
1

. For the minimum–phase case we obtain the 

following relation between the modulus and phase:  

ϕ(x
1
, x

2
)=–

x
1

π v.p.
⌡
⌠

–∞

+∞

 

 

ln A(ξ
1
, 0) dξ

1

ξ
1
(ξ

1
 – x

1
)

–
x

2

π v.p.
⌡
⌠

–∞

+∞

 

 

ln A(x
1
, x

2
) dξ

2

ξ
2
(ξ

2
 – x

2
)

; 

 (10) 

ln A(x
1
, x

2
) = 

x
1

π  v.p.
⌡
⌠

–∞

+∞

 

 

ϕ(ξ
1
, 0) dξ

1

ξ
1
(ξ

1
 – x

1
)
 + 

x
2

π  v.p.
⌡
⌠

-∞

+∞

 

 

ϕ(x
1
, ξ

2
) dξ

2

ξ
2
(ξ

2
 – x

2
)

; 

 

ϕ(x
1
, x

2
)=–

x
2

π v.p.
⌡
⌠

-∞

+∞

 

 

ln A(ξ
2
, 0) dξ

2

ξ
2
(ξ

2
 – x

2
)

–
x

1

π v.p.
⌡
⌠

–∞

+∞

 

 

ln A(x
1
, ξ

2
) dξ

1

ξ
1
(ξ

1
 – x

1
)

; 

 

ln A(x
1
, x

2
) =

x
2

π v.p.
⌡
⌠

–∞

+∞

 

 

ϕ(0, ξ
2
) dξ

2

ξ
2
(ξ

2
 – x

2
)
+
x

1

π v.p.
⌡
⌠

–∞

+∞

 

 

ϕ(ξ
1
, x

2
) dξ

1

ξ
1
(ξ

1
 – x

1
)

.(11) 

 

As can be seen from these equations, the two–
dimensional Hilbert transforms are, in fact, a succession of the 
one–dimensional Hilbert transforms and a difference between 
Eqs. (10) and (11) is reduced to a difference in the order of 
successive applications of the one–dimensional Hilbert 
transforms. Since the finite value of the phase or modulus is 
independent of the path, the right sides of Eqs. (10) and (11) 
are equal to each other under the minimum–phase conditions.  

The discrete two–dimensional Hilbert transforms are 
derived for the minimum–phase case analogously by applying 
the Cauchy formula with the integration contour shown in 

(Fig. 1b) first to ln 
RJ(z1

, 1)

z
1

 and then to ln 
RJ(e

ix
1, z

2
)

z
2

 or 

vice versa.  
Discrete analog for Eq. (10) can be given in the 

following form:  
 

ϕ(x
1
, x

2
) = – 

1
2π v.p. 

⌡
⌠

–π

π

 

 
ln A(ξ, 0) 

⎩
⎨
⎧

⎭
⎬
⎫

cot 
ξ
1
 – x

1

2  – cot 
ξ
1

2 dξ
1
 – 

– 
1
2π v.p. 

⌡
⌠

–π

π

 

 
ln A(x

1
, ξ

2
) 
⎩
⎨
⎧

⎭
⎬
⎫

cot 
ξ
2
 – x

2

2  – cot 
ξ
2

2 dξ
2
 ; (12) 
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ln A(x
1
, x

2
) = 

1
2π v.p. 

⌡
⌠

–π

π

 

 
ϕ(ξ

1
, 0) 

⎩
⎨
⎧

⎭
⎬
⎫

cot 
ξ
1
 – x

1

2  – cot 
ξ
1

2 dξ
1
 + 

 

+ 
1
2π v.p. 

⌡
⌠

–π

π

 

 
ϕ(x

1
, ξ

2
) 
⎩
⎨
⎧

⎭
⎬
⎫

cot 
ξ
2
 – x

2

2  – cot 
ξ
2

2 dξ
2
 . 

 

Let us now try to select the finite values of the 
filtration coefficients (γ

1
, γ

2
) of an EA of the image  

 

Jn
1
, n

2
′  = Jn

1
, n

2
exp(– γ

1
n

1
 – γ

2
n

2
) , 

 

so that the minimum–phase conditions be simultaneously 

fulfilled in a two–dimensional case f(w
1
, 0) ≠ 0 and 

f(x
1
, w

2
) ≠ 0 (RJ(z1

, 1) ≠ 0, RJ(e
ix

1, z
2
) ≠ 0), i.e., let us 

transfer Statement 5 and its consequence to the two–
dimensional case. Detailed theoretical analysis of the 
conditions of compatibility of the system of inequalities 
results in the inequality  
 

n∧
1
n∧

2
 lnB

1
lnB

2
 ≤ 1 , (13) 

 

where  
 

 

B
1
 = max

n
2
, n

1
>0

{Jn
1
, n

2
}/J

0, n
∧

2
 , B

2
 = max

n
2
, n

1
>0

{Jn
1
, n

2
}/Jn

∧

1
, 0

 , and  

J
0, n

∧

2
 and Jn

∧

1
, 0

 are either the first nonzero values, or the 

maximum elements of the image in its first column and the 

first row, respectively, n∧
1
 and n∧

2
 are the coordinates of 

these elements. Inequality (13) is absolutely true in the 
following particular cases:  

1. n∧
1
 = 0 (hence, n∧

2
 = 0) and vice versa.  

The image has a corner point J
0, 0

 ≠ 0. A linear change 

of variables the cases J
0, N2

 ≠ 0, JN1, 0
 ≠ 0 or JN1, N2

 ≠ 0 are 

also reduced to this condition. The filtration coefficients are 
found from the condition  

 

γ
1
 ≥ ln{1 + max

n
2
, n

1
>0

(Jn
1
, n

2
)/J

0, 0
} ,  

 

γ
2
 ≥ ln{1 + max

n
1
, n

2
>0

(Jn
1
, n

2
)/J

0, 0
} . 

2. Either B
1
 < 1 or B

2
 < 0 but not simultaneously.  

This corresponds to the presence of a bright point on 
the image edge or to the case is which the energy is 
concentrated on the image edges.  

3. B
1
 ≈ B

2
 ≈ 1. This condition is fulfilled for images 

with a very low contrast, or with a constant intensity.  
Thus, in contrast to the one–dimensional case in the 

discrete two–dimensional case we cannot use directly the 
two–dimensional Hilbert transforms in combination with 
the exponential filtration, what makes us to reduce first the 
two–dimensional case to the one–dimensional case. By 
combining Statements 4 and 5 we obtain for γ

0
 from 

Statement 4 the inequality  
 

γ
0
 ≥ ln

⎩⎪
⎨
⎪⎧

⎭⎪
⎬
⎪⎫

1 + 

max
n
1
, n

2
>0

(Jn
1
, n

2
)

Jn
∧

1
, 0

 ,  (14) 

where Jn^1,0
 is the first nonzero element in the zeroth row of 

the image.  
Statement 6. Let J(n)exp(– γn) be the EA of a discrete 

image. Here γ is found from Eq. (3) and γ
0
 statisfies condition 

(14). Then, the modulus and phase of the Fourier spectrum of 
a row–by–row elongated one–dimensional analog of this 
image are unambiguously related by Eqs. (8) and (9).  

If not only the direction but also the value of the 
filtration vector γ is chosen specifically one can construct 
the exact analytical solution of the phase problem in a 
two–dimensional case by using the method of reduction of a 
two–dimensional discrete case to a one–dimensional case.  

Let us consider some practical aspects of this solution.  
A one–dimensional analog of an EA of a two–

dimensional image has the form Inexp(– γ
0
n), 

n = n
1
 + n

2
(N

1
 + 1). By substituting the value γ

0
 from 

Eq. (14) in this relation and assuming that, for example,  
J

max

J
min

 ∼ 100 we obtain γ
0
 ∼ 10. If the image arrays are of 

64 × 64 dimensionality, then the final value n = 4096 and the 
last element of the EA of the image has the form I

4096
 × 100–

4096, meanwhile the accuracy limits of the modern computers 
are of 1070–10300. Consequently, this method has a limited 
application only to small–dimensional images which 
approximately involve 10 × 10 resolved elements.  

The above–generalized two–dimensional Hilbert 
transforms make it possible to consider theoretically the 
question on unambiguity of the phase problem in a two–
dimensional continuous case. Below this question is 
considered in more detail.  

 
QUALITATIVE ANALYSIS OF THE UNAMBIGUITY  

IN A TWO–DIMENSIONAL CONTINUOUS CASE  
 
If one refuses from the minimum–phase limitations the 

first relations in Eqs. (10) and (11) take the form  
 

ϕ(x
1
, x

2
) = ϕ

min
(x

1
, 0) – arg ∑

k

 
 

x
1
 – w

1k*

x
1
 – w

1k
 + 

 

+ ϕ(x
∧

1
, x

2
) – arg ∑

l

 
 

x
2
 – w

2l*(x
∧

1
)

x
2
 – w

2l(x
∧

1
)
  (15) 

 

ϕ(x
1
, x

2
) = ϕ

min
(0, x

2
) – arg ∑

m

 
 

x
2
 – w

2m*

x
2
 – w

2m
 + 

 

+ ϕ
min

(x
1
, x
∧

2
) – arg ∑

n

 
 

x
1
 – w

1n* (x
∧

2
)

x
1
 – w

1n(x
∧

2
)
 , (16) 

 

where {w
1k}, {w2l(x

∧
1
)}, {w

2m}, {w
1m(x

∧
2
)} are the roots of 

equations f(w
1
, 0) = 0, f(x

∧
1
, w

2
) = 0, f(0, w

2
) = 0, 

f(w
1
, x
∧

2
) = 0, respectively, and designation x

∧
i, signifies 

that the corresponding variable is fixed.  
As has already been mentioned the final value of the 

phase must not depend on the path being calculated along and 
Eq. (15) is equal to Eq. (16) (the so–called closure 
condition).  
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Constructions of the solution can appear only at 
transferring the roots, i.e., when only the second and fourth 
terms are changed. In this case the constructed solutions have 
the same region S as actual solutions, since the squared 
modulus, and hence, the autocorrelation having the size of 2S 
do not change in this case (under conditions the solutions are 
positive).  

Let us assume that a transfer of one of the roots was 
done along the line x

2
 (x

1
 = 0) and the second term of 

Eq. (16) was changed (the root w*
2m will be replaced by w

2m). 

In order to keep the equality between Eqs. (15) and (16) it is 
necessary to change either the fourth term in Eq. (16) or the 
variable term in Eq. (15). Since the phase at the point x

1
, x

2
 

can be calculated using these equations along any broken line, 
an infinite set of such broken lines exists in a continuous case 
while a finite value is also fixed being equal to the sum of the 
terms at the straight segments of the broken line, we can 
conclude that the "local" transfer of roots on any segment of a 
broken line has to be accompanied by the "global" transfer of 
roots in all other one–dimensional sections to compensate for 
the local one. As follows from the principle of transfer of the 
roots, the phase changes Δϕ cannot be infinitely small values 
since the set of roots is not continuous and is different for each 
section. Therefore, it is practically impossible to compensate 
for the local discrete phase change (jump) (i.e., to keep the 
closure condition) with the help of infinite or finite number of 
other finite phase jumps.  

Thus, the possibility of constructing an extraneous 
solution in a two–dimensional continuous case can only be 
realized with the help of a "highly coordinated" "global" 
transfer of the regions or some closed sets of zeroes in a four–
dimensional space of the roots f(w

1
, w

2
) = 0. It is obvious 

that this can be done only at a very specific disposition of such 
set, for example, in Ref. 9, where in virtue of nearly circular 
symmetry of the image a two–dimensional case is reduced to a 
one–dimensional case in terms of the Bessel functions.  

The correctness of the two–dimensional Hilbert 
equations obtained and the "closure" condition existence are 
confirmed indirectly by Refs. 10 and 11, in which an 
approximate method was used for retrieving the phase which 
makes it possible to retrieve the modules of rare phases in the 
orthogonal media. In this case, when inverting the phases 
themselves there appeared an uncertainty in sign, which was 
eliminated by the train of trials using a constancy of the final 
phase value irregardless of the ways of coming at this point. 
As a result, the set of solutions was obtained in a one–
dimensional case, since there are no "closure" condition, while 
in a two–dimensional case it is unique.  
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