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The possibility of optimizing the energy transfer of a laser beam propagating 
along a vertical path through the atmosphere to the far–diffraction zone is analyzed. 

On the basis of numerical calculations according to the small–angle radiative 
transfer equation performed for a wide range of beam energy parameters including the 
beam focusing along the two perpendicular axes, the range of values of these 
parameters is identified which provides for the optimal radiation transfer. The use of 
this approach and the obtained results enables one to assess the potential possibilities 
of real laser systems intended to transfer the energy through the atmosphere. 

 
Analysis of propagation of laser radiation revealed 

many factors which engendered variations in the spatial and 
temporal characteristics of radiation.1 

The most typical scheme of the energy transfer along a 
vertical path comprises an energy source, a layer of a 
nonlinear medium, and, at a fixed distance from the source, 
a receiving object. The energy transfer of partially coherent 
radiation through the layer of the nonlinear medium to 
remote objects was analyzed, in particular, by Zemlyanov 
and Sinev2 and Babaev et al.3 In the process of transfer it is 
necessary to compensate for the nonlinear effects, which 
result in broadening of the angular divergence (width) of a 
beam. Several authors study this subject in their papers 
considering either the quasioptical approach for coherent 
beams4 or the aberration–free approach.5 

Let us consider the propagation of high–power 
partially coherent optical radiation, which enters a 
nonlinear medium, along the vertical path to the far zone. 
We can vary both beam's energy parameters and initial 
focusing of the beam in the radiation plane along the two 
perpendicular axes. 

The problem is to maximize the effective power density 
of radiation in the receiving plane 

 

Weff(zr) = P/Seff(zr) , (1) 

 
where P and Seff are the total power and effective cross 

section of the beam in the receiving plane zr, determined as 

 

Seff(zr) = P–1
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We calculate the parameters of optical radiation on the 

basis of solution of the radiation transfer equation in the 
small–angle approximation. In evolutionary coordinates 
normalized to the refraction length 
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this equation has the form 
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J(z, R, κ, t) = 0 , (4) 

 

where ε~(z, R, t) is the relative perturbation of the dielectric 
constant of the medium upon exposure to the incident 
radiation, J(z, R, κ, t) is the brightness (the ray intensity) 
of radiation, a0 is the initial radius of the beam, α is the 

volume coefficient of absorption, ρ is the density of the 
medium, cp is the specific heat of the medium, n0 is the 

refractive index of the medium, and ν is the wind velocity. 
The height dependence of the characteristics of the medium 
(absorption coefficient, temperature, and direction and 
velocity of wind) is accounted for by using in calculations 
the seasonal atmospheric models developed in the Institute 
of Atmospheric Optics. 

In the process of calculations we obtain the angular 
width of a beam passed through the nonlinear medium in 
the far–diffraction zone 
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FIG. 1. The angular width θD
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 vs the 

diffraction length. 
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Figure 1 shows the dependence of the quantity  

θD

2
 = θ
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/(a0/LD)

2
 on the diffraction length for a model 

of summer atmosphere, where LD

2
 = κ

2
a0

4/( )1 + a0

2
/ac

2
 

is the diffraction length, ac is the coherence radius of 

radiation, and κ is the wave number. 
As can be seen from Fig. 1, for the values of LR 

greater than the effective thickness of the atmosphere 

(≈ 3 km), the value θD

2
 is close to the diffraction limited, 

but as the power increases the sharp broadening of the beam 
occurs at LR ≈ 3 km. 

In practice the energy is incident, as a rule, upon a 
bounded surface element, whose size can be much smaller 
than Seff. Then the problem is to maximize the effective 

power density in the receiving plane  
 

Weff(zr) = P/Seff(zr), (6) 

 
in order to provide for the optimal energy transfer from the 
transmitter to the receiver. Taking into account the validity 
of the relation 

 

θR

2
 = θ

Σ

2
/(a0/LR)

2
, (7) 

 
it is easy to be convinced that the proportionality 

 

Weff ∼ θR

–2

, (8) 

 
follows from Eqs. (3), (6), and (7). In physical sense it 

means that θR

2
 is an angular width of the beam determining 

the effective power density received within Seff. 

The dependence of θR

2
 on LR is shown in Fig. 2. The 

solid curve corresponds to the collimated beam. As can be 
seen from the figure, the optimal value of LR, minimizing 

θR

2
, exists. In other words, there exists such a value of the 

initial power P, that its exceeding results in a decrease of 
Weff, i.e., the less amount of energy will be incident on the 

receiving aperture than that for smaller values of the initial 
power. 

Let us now consider the results of beam focusing along 
the two perpendicular axes (Fig. 2, dotted curve). We used 
the values of initial foci calculated on the basis of a simple 
algorithm described in detail in Ref. 6. 

As can be seen, focusing enables one to increase the 
effective power density. It should be noted that the 

minimum value of θR

2
 = f(LR) is shifted in comparison with 

the collimated beam toward the region of larger initial 
power of the beam. At the same time Weff increases from 

10% (LD = 30 km) to 20% (LD = 150 km). 

It is evident that the region in Fig. 2, in which θR

2
 

reaches its minimum is of practical interest. Let us denote 

by θm

2
 the minimum angular width of the beam. The 

corresponding value of the diffraction length LR, at which 

the angular width reaches its minimum, we denote by LR,m. 

Then from Fig. 2 it follows that for LD > 50 nearly linear 

dependence of LR,m, at which θm

2
 is reached, on the 

refraction length takes place, namely LR

2

,m ≈ 0.83 LD. 

Hence, it follows that Popt ∼ θD, where Popt is the optimal  

initial power of the beam at which the maximum effective 
power density is transmitted for the given beam with the 
diffraction length LD. 

 

 
 

FIG. 2. The angular width θD

2
 = θ

Σ

2
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2
 vs the 

refraction length. The solid curve stands for the 
collimated beam, dotted one for the focused beam. 

 

The dependence of θm

2
 on LD for a collimated beam is 

plotted in Fig. 3 from which the proportionality θR

–2

 ∼ LD 

–1
 

can be seen. 
 

 
 

FIG. 3. The minimum angular divergence θm

2
 vs the 

diffraction length. 
 

Thus, from the data shown in Fig. 2 the following 
regularities are determined 

 

Popt ∼ θD, Weff,opt ∼ θD 

–1
.    (9) 

 
From which it follows that by improving the coherent 

properties of a beam (i.e., decreasing the value of θD), the 

increase in the power density of radiation proportional to 

θD 

–1
 can be obtained. But it should be noted that such an 

increase can be obtained only with consistent decrease of 
the initial power of the beam. Otherwise, the decrease of θD 

has no marked effect on the radiation power density, while  
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the variations of the initial power of a beam without 
consistent variations of θD may even degrade the efficiency 

of energy transfer. 
 

 
 

FIG. 4. The minimum angular divergence θm

2
 vs the ratio of 

the square refraction length to the square diffraction length. 
 

The above–obtained results can be represented in the 
other form. Figure 4 shows the dependence of θm on the 

ratio of the square refraction length to the square 
diffraction length. The linear dependence between these 
values can be seen. From this dependence it follows that for 

optimal conditions of energy transfer through the 
atmosphere the relation 
 

θ
Σ

2
 ≈ 1.6θD

2
 

 
is valid. 

It means that under optimal conditions of energy 
transfer the contribution of nonlinear effects to broadening 
of the beam becomes comparable, but still less than the 
diffraction broadening. 

Thus, the conditions of the effective transfer of the 
energy of continuous powerful partially coherent radiation 
through the atmosphere have been analyzed in this paper. 
The obtained results can be used to assess the possibilities of 
specific laser systems intended to transfer the energy 
through the atmosphere. 
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