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The ray approximation is constructed for the solution of the equation for the 

second–order coherence function. Based on the solution obtained in this approximation 
the self–actions are compared of coherent and partially coherent beams with equal 
Fresnel's numbers. The relation of this approximation with the ray approximations 
constructed for the solution of the small–angle radiative transfer equation is 
discussed. 

 
The equation for the second–order coherence function 

can be used to describe the propagation of partially coherent 
radiation in a refraction medium 
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where k is the wave number, z is the coordinate along the 
propagation axis, R and ρ are the summed and difference 
coordinates in a plane perpendicular to the propagation 
axis, and ε is the perturbation of the dielectric constant. 

For a linear refraction medium Eq. (1) is the rigourous 
consequence of the parabolic equation. For a nonlinear 
medium Eq. (1) may be derived from the parabolic equation 
under certain conditions (see, e.g., Refs. 1–3) enabling us 
to separate the product of the fluctuating dielectric constant 
and field by averaging. 

Without dwelling on this question, we note that in a 
physical sense it means that the induced (nonlinear) 
fluctuations of the dielectric constant unsignificantly affect 
the field fluctuations. 

Possible ways of obtaining the analytical solutions of 
Eq. (1) are rather limited. Numerical solution of the given 
equation is a nontrivial problem due to its 
multidimensionality, because the coherence function 
depends on five spatial variables. In the papers that have 
been published the numerical solutions of this equation are 
given for the axisymmetric problems whose dimensionality 
is reduced to four.4 

In this paper the ray approximation is applied for the 
solution of the given equation. 

Let us represent the coherence function in the form 
 

Γ(z, R, ρ) = γ(z, R, ρ) exp (iΦ(z, R, ρ)) , 
 

where γ and Φ are the real functions. Substituting this 
relation into Eq. (1) and assuming real and imaginary parts 
of this equation to be equal to zero we derive the following 
system of equations: 
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Acting on Eq. (3) by the operator ∇

ρ
 and approaching 

ρ to zero we derive 
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where 
θ = κ–1

 ∇
ρ
Φ⏐ρ=0

 . 

 
It is well known that the average energy flux density 

P is related with the coherence function by the following 
formula10 
 
iκP(z, R) = ∇

r
 Γ(z, R, r)⏐r=0

 , 

 

where r = {ζ, ρ}, z and R are the summed coordinates, and 
ζ and ρ are the difference coordinates. Taking into 
consideration the fact that γ is the even function while Φ is 
the odd function of the difference argument r we derive 
 
κP(z, R) = γ(z, R, r = 0) ∇

r
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 = W(z, R) ∇
r
 Φ⏐r=0

 , 
 

where W(z, R) = γ(z, R, r = 0) is the average intensity of 
the radiation. 

Then n = κ–1∇
r
Φ|

σ=0
 is the unit vector collinear to the 

direction of the average energy flux density. We assume 
that the average wave front is perpendicular to the average 
energy flux density at any point. Hence, we obtain that θ is 
the tangential component of the unit vector n perpendicular 
to the average wave front. Then for the diffraction ray 
perpendicular to the average wave front at each point the 

relation dR/dz = θ is valid. Taking this relation into 
account from Eq. (3a) we derive the equation for the 
diffraction ray 
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Approaching ρ to zero in Eq. (2) and taking into 
account that γ and Φ are the even and odd functions of the 
difference argument ρ, respectively, we derive the equation 

 
∂W
∂z  + ∇

R
 (θW) = 0 , (5) 

 
from which it follows that the energy transferred along a 
ray tube bounded by diffraction rays conserves. Then for 
variation of the radiation intensity along the diffraction ray 
we obtain 

 

W(z, R(z)) = W(z = 0, R
0
)/⏐ ⏐dR(z)

dR
0

 , (6) 

 

where the determinant |dR(z)/dR
0
| is the ratio of the 

current cross section of the ray tube to the initial one when 
they both approach to zero, and R and R

0
 are the current 

and initial transverse coordinates of the diffraction ray 

(R
0
 = R(z = 0)). 
In this way, Eq. (1) is transformed into a system of 

two equations (4) and (6). There are three unknown 
variables R, W, and γ in these two equations, and 
additional conditions must be employed. In particular, 
assuming the radiation to be coherent and representing the 
radiation field in the form 
 

E(z, R) = A(z, R) eiS(z, R) , 
 
 

we can write 
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ρ
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Substituting this relation into Eq. (4) we derive the well 
known equation5,6 
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where A = W1/2 is the wave amplitude. Following Ref. 5 
let us introduce the effective dielectric constant  
ε
eff

 = ε(z, R) + κ–2A–1∇ 
R

2A, then 
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The system of Eqs. (6)–(8) is analogous to the system 
of equations of geometric optics in quasioptics 
approximation but has a basic difference. The diffraction 
term entering into ε

eff
 prevents the formation of caustics 

(intersections and collapses of rays). The caustics arise only 
when we consider the Kerr nonlinearity in the case in which 
the variation of the dielectric constant is described by the 

relation Δε = ε
2
|E| 2, which ignores a real saturation of 

increase of the dielectric constant with increase of |E| 2. 
The system of Eqs. (6) and (8) is solvable as far as it 

contains only two unknowns R and W. It was numerically 
solved in the ray approximation.7 However we note that the 
given system describes the coherent radiation propagation 
and is identical to the parabolic equation rather than to 
Eq. (1). 

The system of Eqs. (4) and (6) would be solvable if 
Eq. (4) were independent of γ. We can eliminate this 
dependence assuming that the modulus of the coherence  

function γ keeps the Gaussian shape in difference 
coordinates, i.e., 
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where ρ = {x, y}. But this condition is still insufficient. We 
must also determine a regularity of variation in the 
parameters ax, ay, and b attendant to the propagation of the 

radiation through the refraction medium. 
We shall assume that the condition  
 

⌡⌠
–∞

⌡⌠
∞

 dρ ⏐Γ(z, R, ρ)⏐ = W(z, R).s
c
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is satisfied along the diffraction ray, where s

c
(z, R) is the 

coherence area. For a linear regular medium this was shown 
in Ref. 8. For a nonlinear medium this condition will be 
satisfied if the induced fluctuations of the dielectric 
constant have a negligible effect on the field statistics, i.e., 
under the same assumptions as for Eq. (1). The fulfilment 
of condition (9) means that in the process of radiation 
propagation the degree of the coherence between any pair of 
diffraction rays remains unchanged. 

Then we can write 
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where a
c
 is the initial coherence radius of the radiation and 

ρ(z = 0} = ρ
0
 = {x

0
, y

0
}. 

Then we assume that the initial coherence radius is 
much smaller than the beam radius. In this case, if we 
determine the diffraction–ray path from Eq. (4) the paths 
of other rays located within the area of the ray coherence, 
can be determined as variations of the initial path and are 
described by the equation following from Eq. (4) 
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where ε
eff

 is the effective dielectric constant introduced in 

analogy with Eq. (8) and R(z) is the solution of Eq. (4) 
with the initial conditions R(z = 0) = R

0
 and 

dR(z = 0)/dz = θ
0
. For the focused ray we have 

θ
0
 = R

0
/F–(F is the focal length). 

Equation (11) is the linear vector equation of the second 
order. Assuming δR(z) = ρ(z) and prescribing the initial 

conditions δR(z = 0) = ρ
0
 and dδR(z = 0)/dz = ρ

0
/F, we 

derive from Eq. (11) 
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where v
1
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2
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2x, ν2y} is the fundamental 

system of solutions of Eq. (11) obtained with the following 
initial conditions: 
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v

2
(z = 0) = {0, 1}, dv

2
(z = 0)/dz = {0, F–1} . 



V.V. Kolosov Vol. 5,  No. 4 /April  1992/ Atmos. Oceanic Opt.  257 
 

 

By solving system (12) for x
0
 and y

0
 and substituting 

these values into Eq. (10), we derive 
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It is easy to verify that substituting the coherence 

function having the Gaussian distribution in the difference 
coordinates, whose parameters satisfy Eq. (13), into 
Eq. (9), we derive 
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Taking into account the fact that the following relations  
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are valid along the diffraction rays, from Eq. (6) we obtain 

 

W(z, R(z)) = W(z = 0, R
0
)/Δ , (15) 

 

and then the right side of Eq. (14) is equal to constant. 
Thus, with an account of the above–made 

assumptions, Eq. (4) can be transformed into 
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where R = {X, Y} , 
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Equation (11) is analogously transformed into 
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where i = 1, 2. 

The system of Eqs. (15)–(17) completed by the 
relation for the dielectric constant as a function of the 
radiation intensity or the spatial coordinates with the 
abovedefined initial conditions is closed. When describing 
the diffraction of the Gaussian ray as well as during its 
propagation through the medium with the parabolic profile 
of the dielectric constant the system has an analytic solution 
coinciding with the well–known solutions.8 

We note that the system of equations is analogous to 
the system of equations representing the ray approximation 
for the radiative transfer equation7 derived in the limiting 
case of geometric optics (the parameter of nonlinearity 
approaches to infinity). 

 

 
 

FIG. 1. The intensity distribution in the region of the 

aberrational maximum. 
 
Figure 1 shows the calculated results for the two–

dimensional (slit–shaped) beams with the Gaussian initial 
intensity profiles propagating under conditions of the wind–
induced nonlinear refraction. The calculations were 
performed for the coherent and partially coherent beams 
with equal initial diffraction divergence (i.e., for the beams 
with equal Fresnel's numbers). Under conditions of 
diffraction the intensity profiles of the beams vary vs 
distance in the same way preserving the Gaussian shape. 
The nonlinear refraction results in the aberrational 
distortions of the beams and, as a consequence, in the 
difference of the intensity distribution. Figure 1 shows the 
intensity distribution in the region of aberrational maximum 
at the distance z = 1.8 L

r
 (L

r
 is the refraction length) for 

the coherent (curve 1) and the partially coherent (curve 2) 
beams. Calculations were performed for the parameter of 

nonlinearity R
ν
 = Ld

 2/L r
 2 = 103 (Ld is the diffraction 

length). It can be seen that the intensity of the partially 
coherent radiation is higher. It is associated with the lower 
gradient of the diffraction term entering into ε

eff
 for the 

partially coherent radiation in comparison with the coherent 
one. With increase of the parameter of nonlinearity the 
magnitude of nonlinear terms decreases inversely 
proportional to R

ν
. The contribution of diffraction terms 

becomes negligible for R
ν
 = 106, and the intensity  
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distributions of coherent and partially coherent beams 
coincide (curve 3). With increase of the distance the 
intensity of the abberational maximum and gradients of the 
intensity distribution also increase. The contribution of 
diffractional terms increases and for R

ν
 = 106 the 

differences appear between the intensity distributions of the 
coherent and the partially coherent beams. The peak 
intensities differ nearly by a factor of 2 for R

ν
 = 103 at the 

distance z = 1.9 Lr. 

These calculations were performed on a grid with a 
variable step in the plane perpendicular to the propagation 
axis. The nodes of the grid were the points of intersections 
of diffraction rays with the given plane. Since the sharp 
increase in the intensity is caused by crowding of the 
diffraction rays the automatic adaptation of the grid to the 
nonlinear distortions of the beam takes place for the 
collimated and focused beams. 

The ray approximation proposed in this paper for the 
solution of the equation for the coherence function is 
analogous to the methods of solution of the radiation 
transfer equation described in Refs. 7 and 9, where the 
Gaussian shape of the brightness body being the Fourier 
transform of the coherence function in the difference 
coordinates was assumed to be unchanged. In spite of the 
identity of the approximations of the brightness body and 
coherence function by the Gaussian distributions, they yield 
different results. The real brightness body is substituted in 
Refs. 7 and 9 by the Gaussian distribution coinciding with 
the brightness at the point of maximum. Since the vector 
perpendicular to the phase front is defined as the weighted 
mean vector of the brightness body and for the 
asymmetrical brightness body (this being the case of 
radiation self–action) it does not coincide with the 
maximum of the brightness distribution, this approximation 
leads to the error in determining this vector. The error is 
also introduced in the determination of brightness at the 
given point in the form of the integral of the brightness  

body. When approximating the coherence function by the 
Gaussian distribution these errors are not introduced. There 
is one more fundamental difference which is associated with 
the fact that determinant in Eq. (6) is nonzero, while the 
corresponding determinants in Refs. 7 and 9 vanish 
unavoidably for the problems of self–action. For this 
reason, the calculations of self–action by these methods can 
be performed either at the distances, for which the 
determinants are nonzero,7 or applying more  
accurate approximations, which require much computation 
time.9 
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