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Possibility of using the simplex method to compensate for thermal blooming of a 
long light pulse propagating through a regular medium is studied by the method of 
numerical modeling. The algorithm increasing the efficiency of the beam phase control 
under nonstationary conditions is proposed. A simplex size is optimized as a function 
of a nonlinearity parameter, beam control duration, and speed of response of the 
adaptive system.  

 

The problem of searching after new algorithms for 
control of a phase of light beams propagating through the 
natural media is of great importance in connection with 
the development of atmospheric optics systems. One of 
the most widely employed principles for accomplishing 
the control in the optical systems with feedback is 
currently the method of aperture sounding which provides 
a reliable search after the extremum of the figure of merit 
under stationary condition without noise. At the same 
time, it appears that the gradient procedures of "ascent 
on a hump," which originally provided the basis for the 
aperture sounding, are ineffective under conditions of 
fluctuations in the parameters of the beam and medium, of 
the transient processes in the "beam–medium" system, etc. 

It is therefore of interest to develop the algorithms 
for control of the light beam phase based on the methods 
which do not require the calculation of the gradient of 
the goal function, in particular, this being the simplex 
search. The preliminary studies1 showed its efficiency in 
compensating for the stationary wind–induced refraction. 
It was found that for attaining maximum in the 
illumination of the object by the focused radiation the 
simplex method requires the number of measurements of 
the control figure of merit 1.5 times smaller than the 
gradient method does. This paper is aimed at the 
development of the simplex method for dynamic beam 
phase control under conditions of nonstationary wind–
induced refraction when the position of the maximum in 
the figure of merit in the space of the control coordinates 
strongly depends on the trajectory of its search.  

 
MODEL OF THE LIGHT BEAM PROPAGATION  

THROUGH THE NONLINEAR MEDIUM 

 
The beam propagation through a moving weakly 

absorbing medium is described by the system of 
dimensionless equations  
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Here the transverse coordinates x and y are normalized to 
the initial beam radius α

0
, the longitudinal coordinate z is 

normalized to the diffraction length zd = κa
0
2 (k is the wave 

number), the time t is normalized to the convective time 
τ
ν
 = α

0
/V, where V is the velocity of the moving medium 

along the x axis. The nonlinearity parameter R is 
proportional to the input beam power P

0
 and to the time of 

radiation interaction with the medium.  
At the transmitting aperture (z = 0) an input field is 

formed  
 
E(x, y, 0, t) = A

0
(x, y) exp (iU(x, y, t)) (3) 

 
with the controllable phase profile of the beam being chosen 
from the condition of the focusing criterion maximum in the 
observation plane  
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which is the relative fraction of the light power falling 
within the given aperture ρ(x, y).  

Since the diminishment of the radiation power at the 
object is primarily related to non–axisymmetric defocusing 
of the beam and its deviation from rectilinear propagation, 
the incidence angle θ and two wave front curvatures Sx and 

Sy determining the beam focusing in perpendicular planes 

are employed as control coordinates. In accordance with this 
we have  
 
U(x, y, t) = θ(t) x + 0.5 (Sx(t) x

2 + Sy(t) y
2) . (5) 

 
The numerical modeling was accomplished along the 

path z
0
 = 0.5, the amplitude profile upon entering the 

medium and the aperture function of the object were taken 
to be Gaussian 
 

A
0
(x, y) = exp ( – (x2 + y2)/2) , (6) 

 

ρ(x, y) = exp ( – (x2 + y2)) . (7) 
 

 
ALGORITHM FOR SIMPLEX SEARCH  

IN THE CASE OF TARGET DRIFT  
 
The beam displacement in the windward direction in 

the process of evolution of thermal distortion in the space of 
control engenders the effect which is called a target drift in 
the theory of optimization.2 Under these conditions the 
control can be realized via two processes: ascent on a 
moving hump and control of this movement. High velocity 
of the target drift may result in unstable regimes of searching,  
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complicated choice of the step direction, and alternation 
of searching and ascending. To overcome these difficulties 
a comprehensive analysis of a searching strategy is 
needed.  

Recall the main idea of the simplex method.2 In 
accordance with this approach the movement toward the 
optimum in the space k of the control coordinates is 
accomplished by a sequential reflection of the simplex 
vertex in which a current value of the goal function turns 
out to be the smallest with respect to the opposite face. A  

multiple reflection of the "worst" vertices results in a stepwise 
movement of the simplex to a target along some broken line. 
As was found in Ref. 1, in the regime of stationary wind–
induced refraction a successful simplex search for maximum in 
the focusing criterion depends on the possible implementation 
of such procedures as forbidden return to the preceding 
simplex configuration, decreasing its size while approaching 
the extremum, recalculation of the goal function at the vertex 
which has not been replaced for its specular image during the 
fixed number of steps etc.  

 

 
 

FIG. 1. The focusing criterion Jf as a function of time t in the process of dynamic 

compensation for nonstationary wind–induced refraction based on the simplex method: 1) 
algorithm with forbidden return and 2) algorithm with forced reflection of vertices at 
z
0
 = 0.5 for R = – 20.  

 

In the regime of nonstationary the wind–induced 
refraction when the position of the maximum in the goal 
function strongly depends on the trajectory of its search, the 
above–described procedures are inefficient. In this case the 
simplex goes in cycles, i.e., the absence of reflection of one or 
several vertices during the fixed number of steps ν results in 
ceasing the progressive movement of the simplex to the target. 
Therefore a forced reflection of "old" vertices turns out to be a 
more reasonable strategy. The results of calculations show that 
for k ≤ 2 it is sufficient to reject only those vertices for which 
ν = k + 1. When k ≥ 3, in addition to this procedure we must 
simultaneously control the vertices for which ν = k + 3, since 
the simplex goes in cycles about the (k – 1) vertices. As an 
example, Fig. 1 shows typical time dependences of the 
focusing criterion for two algorithms of simplex search in a 
three–dimensional space of control based on Eq. (5): with a 
forbidden return and forced reflection of vertices. It can be 
seen that a reasonable implementation of the search allows one 
to increase the efficiency of dynamic compensation for the 
effect of nonstationary thermal lens.  

 
SIMPLEX SIZE OPTIMIZATION 

 
As has been found above, the magnitude and position of 

the extremum in the goal function in space of control 
coordinates depends on the prehistory of the search which is 
obviously determined by both the chosen strategy and the 
simplex size. Since under nonstationary conditions the field 
parameters in the observation plane vary in time in a 
complicated manner, it is difficult to choose any regular 
procedure for changing the simplex edge as approaching the 
optimum. We must recall that in the process of compensation 
for the stationary wind–induced refraction1 it is sufficient to 
make use of the simplest rules of simplex compression 
(power–law or exponential) in order to achieve the optimal 
focusing with any prescribed accuracy. Conversely, in the 
presence of transient processes along the path accompanying 
the search for the optimal phase it seems to be reasonable to 
keep the simplex unchanged. 

 
 

FIG. 2. The total relative light energy E/Ewc falling within 

the receiving aperture during the control time T = 3τr as a 

function of the simplex edge length L (dashed line is for the 
gradient method with an optimal step). Parameters of 
propagation: z

0
 = 0.5 and R = –20. Ewc is the energy in the 

system without control.  
 

Under nonstationary conditions it is worth to 
perform the beam control within the finite time T starting 
from the moment of switching on the laser radiation 
source. Since the characteristic time of establishing the 
thermal lens on the path is t

est
 ≅ 3τ

ν
, it is of primary 

importance to consider the beam control at such times. 
Figure 2 shows the calculated dependence of the total 
energy falling within the given aperture during T = 3τ

ν
 

on the simplex edge length L. The value obtained when 
using a gradient procedure with an optimal step3 is shown 
for comparison here too. It can be seen that the 
efficiencies of both these approaches are of the same order 
of magnitude for simplex edge length L = 0.3. As L 
increases up to L = 0.7, the efficiency of the simplex 
search also increases and then it decreases as a result of 
early oscillations of the figure of merit due to excessive 
high–amplitude changes of the beam phase (Fig. 3).  
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FIG. 3. Dynamic control of the beam phase based on the simplex method for two values of 
the simplex edge length: L = 0.6 (curve 1) and 0.3 (curve 2). Parameters of propagation: 
z
0
 = 0.5 and R = –20. 

 
More detailed calculations reveal that the optimal size of 

simplex L
opt

 is primarily determined by the nonlinearity 

parameter and is less dependent on the control time T. If T 
does not exceed 3τ

ν
, L

opt
 can be evaluated by the empirical 

formula L ≥ kν, where k is the dimensionality of the control 
space and ν is the mean normalized rate of displacement of the 
energy centroid of the uncontrollable beam. For more 
prolonged beam control (T > 3τ

ν
) it is more efficient to employ 

a simplex of smaller size, i.e., L
opt

 g ν.  
 

SPEED OF RESPONSE AND CONTROL EFFICIENCY 
 

The model of the adaptive system with finite speed of 
response determined by the time between sequential wave 
front corrections τc (in the calculations we assumed 

τc = 0.1 τ
ν
) has been considered above. It is obvious that this 

model is incapable of controlling the thermal spreading and 
drift of the beam at the initial stage of heating up the 
medium, i.e., at times of control T ≅ τ

ν
. This is due to the fact 

that within the time (κ + 1)τc needed for determining the 

starting simplex configuration the thermal lens is strongly 
deformed and first operating steps result only in deterioration 
of the focusing criterion. Within the framework of the model 
under study the speed of response of the system can easily be 
varied by changing τc at a fixed relaxation time of the medium 

τr. In particular, infinite decrease in τc makes it possible to 

transfer over to a model of an idealized adaptive system with 
infinitely high speed of response. The search for an optimal 
phase and transient processes occurring simultaneously in the 
real system are approximately discriminated in time. The phase 
optimization for each instantaneous state of the medium can be 
carried out in a "frozen" temperature field with any prescribed 
accuracy. The succeeding relaxation of the medium during the 
time τr allows one to match the obtained phase and the 

nonlinear thermal lens.  
The calculations show that the control within T ≅ τr is 

efficient, if τc ≤ 
1

2(κ + 1)
τr. The simplex size optimization also  

provides the possibilities for increasing the field concentration 
at the target (Fig. 4).  

 

 
 

FIG. 4. Beam phase control for "frozen" instantaneous states 
of the medium (τc = 0.01τ

ν
). 1) L = 0.1 and 2) L = 0.2. 

Parameters of propagation: z
0
 = 0.5 and R = –20. 

 

The analysis of the model problems carried out in this 
paper allows us to conclude that the simplex search for an 
optimal phase is applicable to the dynamic compensation for 
nonstationary wind–induced refraction. A simplex of 
different size depending on the duration T and speed of 
response τc should be employed due to the fact that for each 

concrete T and τc there exists an optimal amplitude of beam 

phase changes directly related with the simplex edge length. 
The a priori estimates of L

opt
 can be made for typical 

situations along the path by means of the numerical 
experiment.  
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