
T.B. Zhuravleva  Vol. 5,  No. 3 /March  1992/ Atmos. Oceanic Opt.  155 
 

0235-6880/92/03  150-05  $02.00  © 1992 Institute of Atmospheric Optics 
 

SENSITIVITY OF THE VALUES OF MEAN RADIATION FLUXES TO THE  

CHANGE OF THE FORM OF THE CLOUD SIZE DISTRIBUTION FUNCTION 
 

T.B. Zhuravleva 
 

Institute of Atmospheric Optics,  
Siberian Branch of the Russian Academy of Sciences, Tomsk 

Received December 3, 1991 
 

The effect of the power–law and exponential functions of horizontal cloud size 
distribution on the formation of the mean radiative regime under conditions of broken 
clouds has been evaluated. The mean radiation fluxes have been estimated for the 
models with the random horizontal size of clouds and with clouds of constant 
(effective) diameter whose value for the statistically uniform models is determined 
from the condition that the probabilities for the viewing direction to be occluded are 
equal. It has been shown that proceeding to the statistically nonuniform models in the 
presence of a small number of large (up to several kilometres) clouds results in the 
significant transformation of the mean radiative regime. 

 

At present the methods for study of the radiative 
properties of cloud fields are most developed for the models of 
clouds with random geometry (broken clouds). In order to 
construct the models of broken clouds which adequately 
describe the statistical properties of real cloud and radiation 
fields, one should use the available experimental data. Despite 
the complexity of field measurements, the variety of types, 
geometric shapes, and size of clouds and their spatio–temporal 
variability, a large amount of information about the physical 
parameters of different cloud types and stochastic structure of 
a cloud field has been accumulated now. In particular, the 
shape of clouds, the cloud size distribution functions, and the 
probability for narrow viewing direction to be occluded by 
clouds were studied in ample detail.1-6 

The cloud size distribution function f(D) (D is the cloud 
diameter) is one of the basic characteristics of cloud fields, and 
its form depends on the observation region, season, cloud type, 
etc. Thus, the data on the horizontal size of cumulus clouds 
derived from plotting the air photographs taken over the 
region of Florida peninsula were discussed in Ref. 5. It was 
shown that for the cloud fields under consideration the 
probability density for horizontal cloud size decreases 
exponentially with increase of D.  

The structural characteristics of stratocumulus clouds 
were derived in Ref. 6 from the data of radiometric 
measurements made with the help of the instruments used 
onboard LANDSAT. Twelve types of stratocumulus clouds 
formed by small cloud cells, elongated cloud bank, and sheet 
clouds were studied there. The horizontal cloud size 
distribution function in the majority of cases is most 
successfully described by the power–law function of the 
diameter. 

The purpose of this study is the use of different 
horizontal cloud size distribution functions f(D) in 
constructing the models of broken clouds and in evaluating the 
effect of the form of the function f(D) on the average 
radiation balance. 

1. Cloud model and solution technique. The optical 
model of broken clouds is specified in the layer Λ: 0 ≤ z ≤ H in 
the form of randomly scalar fields of the extinction coefficient 
σκ(r), of the single scattering albedo λκ(r), and of the 
scattering phase function g(ω, ω′)κ(r), where ω is the unit 
direction vector. Here κ(r) is the indicator function of the 
random set of points in the layer Λ in which the cloud 
material occurs. The mathematical model of the field κ(r) is  

constructed with the help of the Poisson point flux in space.7,8 
It determines the realization of the cloud field as an ensemble 
of clouds of a fixed configuration randomly distributed in 
space with their centers lying in one plane. The cloud shape, 
thickness, probability density of horizontal cloud size f(D), 
and cloud amount H are the input parameters of the model in 
addition to σ, λ, and g(ω, ω′). 

The data on the joint distribution function of cloud 
diameters and heights are limited in number in the literature 
known to the author, and for this reason we used the relation6 

 

H/D = ν(D/Dmax)
β , 

 
when simulating the cloud field, where the average values 
ν = 0.955 and β = 0.031 were used for ν and β. As a first 
approximation, one may set H ∼ D. 

If all of the clouds are of the same shape and their 
projections on the horizontal plane are the discs of diameter 
D, then the cloud amount N and the two–dimensional 
Poisson parameter μ (i.e., the mean number of cloud centers 
per unit area), used when simulating the cloud field, are 
related by the formula9 
 

μ =
 
– 

4 ln(1 – N)

π D2
 , (1) 

 

where 
 

D2

 

= ⌡⌠
Dmin

Dmax

 D2f(D)dD . 

 
We will approximate the clouds by right circular 

cylinders of the same thickness. The unitary flux of solar 
radiation is incident on the upper boundary of the layer, ξ

☼
 

and ϕ
☼
 = 0 are the zenith and azimuthal angles of the Sun. 

In the calculation of statistical characteristics of solar 
radiation, the Monte Carlo algorithm was implemented which 
was developed earlier (see, for example, Refs. 7 and 8). The 
numerical simulation of the sampling random realizations of 
the cloud field with the help of a computer, the solution of 
the radiative transfer equation by the Monte Carlo method  
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for the constructed realization, and the subsequent 
statistical processing are the main points of the algorithm. 

Model 1A. In accordance with Ref. 6, the horizontal 
cloud size distribution function f(D) is represented in the form 

 

fp(D) = 
⎩
⎨
⎧

 

a1D
–α1, D ≤ D0,

a2D
–α1, D ≥ D0,

 (2) 

 

where Dmin ≤ D ≤ Dmax, Dmin = 0.03 km, Dmax = 5 km, and 

D0 g 0.5–0.7 km. The parameters αi for i = 1, 2 range within 

the limits 1.55 ≤ α1 ≤ 1.86 and 2.44 ≤ α2 ≤ 2.9 depending on 

the cloud type considered in Ref. 6. In the subsequent 
calculations we will set D0 = 0.7 km, α1 = 1.55, and α2 = 2.9 

that correspond to the field of stratocumulus clouds consisting 
of small cumulus clouds, of large cloud conglomerations, and 
of clouds of intermediate size. The coefficients ai for i = 1, 2 

determined from the conditions of normalization and of 
continuity of the function fp(D) at the point D = D0 are 

a1 = 0.092 and a2 = 0.057. For these values of αi for i = 1, 2 

the mean diameter is D
–

p = ⌡⌠
Dmin

Dmax

 D f(D) dD = 0.19 km,  

Dp
2  = 0.112 km2.  

Model 1B. We consider the cloud model with 
exponential function of cloud diameter distribution 
 

fexp(D) = ae–bD . (3) 
 

We determine the values of the coefficients a and b in 
Eq. (3) from the normalization condition for the function 

fexp(D) and from the equality Dp
2  = Dexp

2  that in 

accordance with Eq. (1) provides identical values of the 
Poisson parameter μ for one and the same cloud amount N: 
a = 5.16 and b = 4.5 km–1. For these values of a and b and 
for cloud diameter ranging within the limits 

0.03 ≤ D ≤ 5 km we obtain D
–

exp = 0.25 km. 

When implementing the algorithm for calculation of 
statistical characteristics of solar radiation, the cloud field 
κ(r) is simulated in a certain sufficiently large (but 
bounded) region G. Its horizontal size depends strongly on 
the value of maximum diameter, namely, the larger Dmax, 

the greater is the horizontal extension of the region G and 
therefore, the more laborious is the construction of a cloud 
realization. The cloud fields described by formulas (2) and 
(3) consist mainly of the clouds of small size, that is, the 
probability P of occurence of clouds with D d 0.25 km is 
about 0.8 while P (D t 0.25 km) is about 0.004. Therefore 
in the subsequent calculations it is expedient to set 
Dmax = 2.5 km; in so doing, the coefficients in formulas (2) 

and (3) vary insignificantly. We note that with such a 
limitation on Dmax, the procedure of construction of the 

cloud realization is still remaining too complicated problem 
because the region G must be represented as a sum of 
nonoverlapping subregions of smaller area, and one and the 

same probability density μ = – 4ln(1 – N)/(π D2 ) must 

be used for simulating the number of cloud centers and their 
horizontal coordinates and diameters in each subregion. 

 

It is clear that in the case in which the cloud diameter 
is a random variable, the complexity of the algorithm 
increases since additional averaging over this random 
variable must be carried out. Therefore, the question 
arises pertaining to the choice of such a constant diameter 
D for which the mean radiation fluxes for model 1 with 
the randomly horizontal cloud size and for the model with 
the constant cloud diameter (further it is referred to as 
model 2) become close in value with the rest of the 
optical–geometric parameters and the illumination 
conditions being identical. If we find such a diameter 
then a simpler model of cloud field consisting of the 
clouds of the constant diameter may be used for 
calculation of the mean fluxes. 

As is well known (see, for instance, Ref. 3) the mean 

flux of unscattered radiation S
–

 is determined to a 
considerable degree by the probability N

θ
 for the viewing 

direction to be occluded, where θ = ξ
☼
. In accordance 

with Ref. 2, for model 1 we have 
 

N
θ 
(1) =

 
1 – exp[– μ(π D2  + D

–
 H tanθ)] , (4) 

 

while for model
 
2 

 

N
θ 
(2) = 1 – exp[– μ1(πD

2 + D H tanθ)] , (4') 
 

where μ1

 
= – 4ln(1 – N)/(πD2). 

Let us choose such a value of the diameter D for 
model 2 for which the equality N

θ 
(1) = N

θ 
(2) holds (in what 

follows it is referred to as effective diameter) 
 

Deff =
 

D2/D  . (5) 

 

In accordance with Eq. (6), the D p 
eff = 0.6 km and  

Dexp
eff  = 0.45 km.  

In the case in which the probabilities for the viewing 
direction to be occluded coincide, i.e., N

θ 
(1) = N

θ 
(2), one 

may expect that at large optical thickness, the mean 
fluxes of unscattered and, possibly, of scattered radiation 
become close in value. To check this assumption, we 
consider the calculated results. 

2. Calculated results. We will neglect the molecular 
and aerosol scattering within the layer Λ and will set the 
albedo of the underlying surface equal to zero. The 
scattering phase function is taken for the cloud model C1 

(see Ref. 10) at a wavelength of 0.69 μm. 

We denote by S
–

, Q
–

s, and A
–

 the unscattered, 

scattered transmitted, and reflected radiation, 

respectively, for model 2, while by S
–

l, Q
–

sl, and A
–

l the 

corresponding fluxes for model 1, where l = p or l = exp 
depending on the form of the function f(D). 

The calculations were performed for the optical–
geometric parameters of clouds ranging within the limits 
0.1 ≤ N ≤ 0.7, 0 ≤ ξ

☼
 ≤ 60°, and 10 km–1 ≤ σ ≤ 60 km–1 

and for H = 0.5 km. The relative calculational error Δ did 
not exceed 5%. First we will discuss the effect of the 
form of the function f(D) (models 1A and 1B) on the 
mean fluxes of solar radiation and then we will compare 
the calculated results obtained for models 1 and 2. 
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We will start from the analysis of formula (4) in 
more detail. In accordance with Eq. (1) 
 

1 – N
θ
 = exp

⎝
⎜
⎛

⎠
⎟
⎞

ln(1 – N)

⎝
⎜
⎛

⎠
⎟
⎞

1 + 
4D
–

H tanθ

π D2
 . 

 

Since in a first approximation the assumption can be made 

that S
–

 g 1 – N
θ
 (see, for instance, Ref. 3), then 

gs =

 
S
–

exp

S
–

p

 ≈ exp(ln(1 – N) tan θ γ) , (6) 

where 
 

γ = 4H(D
–

exp – D
–

p))/(π D2 ) > 0 . 
 

Due to the negative exponent in Eq. (6), the 

inequality S
–

exp ≤ S
–

p is seemed to be valid. For larger cloud  

amounts, the value ⏐ln(1 – N)⏐ increases; therefore, the 

increase in the difference between S
–

p and S
–

exp is possible. 

As follows from Eq. (7), for fixed cloud amount N at larger 
solar zenith angle ξ

☼
 the decrease of gs is possible because 

tanθ is an increasing function. 
The above–formulated assumptions are confirmed by the 

results of calculation of the mean fluxes shown in Fig. 1. As N 
increases from 0.1 to 0.7 at ξ

☼
 = 30° (Fig. 1a), gs decreases 

from 1 to 0.7 while the ratio Q
–

s,exp/Q
–

s,p increases by a factor 

of 1.1. With growth of the solar zenith angle from 0 to 60° for 
N = 0.5 (Fig. 1b), gs decreases from 1 to ∼ 0.6 while  

Q
–

s,exp/Q
–

s,p ≈ 1.1 at the angles under consideration. The mean 

albedo depends weakly on the type of the function of the 
horizontal cloud size distribution attendant to changes in the 
cloud amount and in the solar zenith angle 0.1 ≤ N ≤ 0.7 and 
0 ≤ ξ

☼
 ≤ 60°, respectively. 

 

 
 

FIG. 1. The effect of the form of function f(D) of horizontal cloud size distribution on the mean radiation 

fluxes S
–

, Q
–

s, and A
–

 for different cloud amounts (ξ
☼
 = 30°) (a) at different solar zenith angles (N = 0.5) 

(b) for H = 0.5 km. Solid curves refer to f(D) = fp(D) and dashed curves refer to f(D) = fexp(D). 
 

For intermediate cloud amount (N = 0.5) at a large solar 

zenith angle (ξ
☼
 = 60°), a variation in the extinction 

coefficient within the limits 10 km–1 ≤ σ ≤ 60 km–1 results in 

the insignificant variations in gs (gs g 0.6) and Q
–

s,exp/Q
–

s,p 

decreases from 1.1 to 1 while A
–

exp/A
–

p ~
< 1.1. 

For comparison of the mean fluxes for models 1 and 2, 
we will use as a criterion for proximity 

δF =

 

F
–

l – F
–

F
–

l

 × 100% , 

where F = S, Qs, A.  

Let us study the dependence of δS, δQs, and δA on the 

cloud amount for model 1A with f(D) = fp(D) and for 

model 2 with D = Deff given by formula (5). The values of 
⏐δSp⏐ for small cloud amounts N d 0.3 are within the limits 

of calculational error, while for intermediate cloud amounts 

N g 0.5 they are about 10% and in addition, S
–

 < Sp. The 

latter is possibly due to the fact that the volume of cloud 
material for model 2 is larger than for model 1A, i.e., 

((Deff)2/ D2  g 3), and the inequality 1 – S
–

 > 1 – S
–

p 

holds for the scattered fraction of energy. The further 
increase in the cloud amount value up to N g 0.7 results in 
the fact that the radiative interaction of clouds starts to 
play an important role. A great number of small clouds for 
model 1A results in the increase in the fraction of scattered 
solar radiation compared to model 2, and for this reason the 

unequality S
–

p < S
–

 becomes valid. For N ≤ 0.7, ⏐δQs,p⏐ ≤ Δ 

while ⏐δAp⏐ decreases from ∼20% for N = 0.1 to 6–7% for 

N t 0.5. 
For a fixed cloud amount as the solar zenith angle 

increases, the conditions of cloud illumination change and 
therefore the fraction of scattered radiation increases due to 

the illumination of cloud sides. The quantity (S
–

p – S
–

)  
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varies insignificantly at 0 ≤ ξ
☼
 ≤ 60°, but due to decrease of 

S
–

p the value of ⏐δSp⏐ increases up to 15% (Fig. 3). At the 

above–indicated angles, δAp and δQsp are negative and vary  

in the following way (for the cloud parameters indicated in 

caption to Fig. 3): ⏐δAp⏐ increases from 5 to 10%, and 

⏐Qs,p⏐ decreases from 8 to 4%.  

 

 
 

FIG. 2. The dependence of mean radiation 

fluxes S
–

, Q
–

s, and A
–

 on the cloud amount for 

σ = 30 km–1 and H = 0.5 km at ξ
☼
 = 30°. Here 

and in other figures the solid curves refer to 
f(D) = fp(D), and dashed curves refer to 

Deff = 0.6 km. 
 

FIG. 3. The mean radiation fluxes S
–

, Q
–

s, and A
–

 

vs the solar zenith angle ξ
☼
 for σ = 30 km–1, 

N = 0.5, and H = 0.5 km. 
 

 

As is well known,11 the derivatives of the mean radiative 
fluxes with respect to the extinction coefficient are by 2–3 
orders of magnitude less than the derivatives with respect to N 
and D depending on the parameters of the problem. For this 
reason we may expect that the mean radiative regime of 
cumulus clouds for both models changes not very significantly 
when σ varies within the limits 10 ≤ σ ≤ 60 km-1. It is obvious 
from the results of calculations that for N = 0.5 at ξ

☼
 = 60° 

the value of δSp remains unchanged (δSp ∼ 15%), ⏐δQs,p⏐ < Δ, 

while the value of δAp is negative, and ⏐δAp⏐ decreases from 

12 to 4%. 
Mean radiation fluxes for the model with the exponential 

function of horizontal cloud size distribution and for model 2 
with Deff = 0.45 km differ insignificantly, namely, ⏐δSexp⏐, 

⏐δQs,exp⏐, and ⏐δAexp⏐ are less than Δ in the considered range 

of variation of the cloud parameters. The relation between the 
content of cloud material, for the above–indicated models, 

being equal to (Deff)2/ D2 , on the average, is about 1.8. It is 

less than in the case in which f(D) = fp(D) and is possibly 

one of the reasons for better agreement between the mean 
radiation fluxes. 

3. The above–described results have been obtained for 
statistically uniform models of cloud field. Let us consider a 
statistically nonuniform cloud model in which the horizontal 
cloud size is described by functions (2) and (3) while the 
cloud height is equal to the diameter of the cloud base 
(model 3). Thus the cloud field consists of cylinders whose 
vertical and horizontal size ranging from several tens of  

meters (Dmin = 0.03 km) to several kilometers 

(Dmax = 2.5 km). The probability N
θ
 for the viewing direction 

to be occluded is the function of the observation height z. 
The purpose of the calculations presented below is to 

find such an analogue of the statistically uniform model with 
clouds of constant diameter D for statistically nonuniform 
cloud model with random horizontal cloud size that their mean 
radiative regimes differ insignificantly. 

Let us consider the cloud field model consisting of the 
cylinders of constant diameter D whose thickness H = D. Let 
us choose the value of D from the condition of equality of the 
Poisson parameters for the fixed cloud amount N: 

D = D2 . 

The values of mean fluxes are presented in Table I.  
 

TABLE I.  σ =
 
30 km–1, N = 0.5, and ξ

☼
 = 0°. 

 

 fct(D) fexp(D) 
D = D2  = 0.33 km

S
–
 

 0.526  0.505  0.501 

Q
–

s 
 0.185  0.239  0.318 

A
–
 

 0.289  0.256  0.181 

D3
 

 0.1226  0.075  0.037 

 
In the case under consideration ξ

☼
 = 0°, the cloud amount 

N equals to the probability N
θ
 for the viewing direction to  
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be occluded, therefore the value of S
–

 is practically 
independent of the type of the function of horizontal cloud 
size distribution. Substantial differences between the mean 
fluxes of scattered radiation are caused to a considerable 
degree by different content of a cloud material within the 

layer Λ. Thus, for f(D) = fp(D) the relation D3 /D3 g 3 

holds primarily due to the presence of even small number of 
clouds of large diameter. These are the clouds with large 
optical thickness that determine the ratio of transmitted to 
reflected radiation, in particular, for model 3 with power–low 

function of cloud diameter distribution: Q
–

s/A
–

 g 0.6, while for 

model 2 this ratio is about 1.7. For the above–indicated cloud 
parameters the mean albedo for model 3 is greater by about 
30% than for model 2 while ⏐δQs,p⏐ reaches 60%. 

 

 
 

FIG. 4. The effect of the extinction coefficient σ on the 
mean fluxes of solar radiation for N = 0.5 and H = 0.5 km 
at ξ

☼
 = 60°. 

 

For the model with f(D) = fexp(D), the ratio  

D3 /D3 g 2 and the differences ⏐δQs,exp⏐ and ⏐δAexp⏐ are 

about 30%. 
Analysis of the results indicates that the error in 

estimating the fraction of transmitted radiation S
–

p + Q
–

s,p for 

the statistically uniform model consisting of clouds of constant 
diameter is no greater than Δ while ⏐δSp⏐ can reach ∼ 15° at  
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

ξ
☼
 > 30°. In the estimation of the mean albedo we must take 

into account that for small cloud amounts N d 0.3 at τ g 15 
and at τ g 5 even for intermediate N, ⏐δAp⏐ is about 10–20%. 

The error in determining A
–

p decreases for N ∼ 0.5 with 

increase of τ: for τ = 15 at ξ
☼
 < 30° ⏐δAp⏐ ≤ Δ while at 

ξ
☼
 ≥ 30° ⏐δAp⏐ becomes comparable to the relative 

calculational error and is about 6–7%. 
Comparison of the mean radiative regimes for the 

statistically nonuniform cloud model with random horizontal 
cloud size with that for the statistically uniform model with 
D = const shows that mean fluxes of scattered solar radiation 
differ substantially. Even small number of clouds of large 
diameter (and therefore, of large optical thickness) results in 

the discrepancy in the values of A
–

 and Qs, which may be as 

large as 60%. 
The author would like to acknowledge Dr. G.A. Titov 

for the formulation of the problem and for the discussions of 
the results and E.V. Trusova for assistance in performing the 
calculations. 
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