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The efficiency of the simplex method of compensation for the stationary wind 

refraction of the beam is numerically investigated. Control of the beam is performed 
based on the class of the first– and second–order wavefront aberrations. The search 
for the maximum illumination from the object being focused with the use of the 
simplex method is found to reduce the number of measurements of the goal function by 
the factor of 1.5–2 in comparison with the gradient procedure. 

 
The problem of transmission of the light power to a 

given point is of great practical importance for the applied 
problems in atmospheric optics. Both adaptive and 
programmable methods of beam control are used to 
compensate for the distortions of the light wave produced 
by a nonlinear refraction and turbulent fluctuations of the 
refractive index of the medium. The aim of control in 
problems of atmospheric optics usually is the search for 
the phase of the light wave for which the criterion of 
radiation quality in the image plane reaches its maximum 
value. One of the methods widely used in optical systems 
with feedback loops is cross–aperture sensing, which 
makes it possible to optimize any measurable criteria 
describing the goal of such control under quasistationary 
conditions. However, gradient procedures forming the 
basis of the method of cross–aperture sensing often yield 
only the local extremum of the criterion of quality, 
strongly depend on the initial conditions, and may even be 
inefficient in the presence of interference in a feedback 
loop. For these reasons the development of the methods of 
phase control of the beams, based on the procedures, 
which do not require the calculation of the gradient of the 
goal function, is of great interest. 

The present paper is devoted to the study of the 
efficiency of adaptive compensation for stationary wind 
refraction of the beam based on the simplex method. The 
simplest optical aberrations, such as wavefront tilt in the 
plane of the medium movement and cylindrical focusing in 
the planes parallel and perpendicular to the direction of 
medium movements are chosen as the base control modes. 
The goal function of control is the criterion of focusing, 
which characterizes concentration of light field within the 
given region in the image plane. 

 

CONTROL WITH THE HELP OF ADAPTIVE 

SYSTEM 
 

Here we give the main points of the idea of the 
simplex method,1 intended to find the extremum of the 
goal function in a k–dimensional space of the controllable 
variables xi. The sequential simplex method consists in 

approaching the optimum by repeated reflections of a 
certain figure (which is called simplex), having k + 1 
tops, which never belong simultaneously to any space of 
lesser dimensionality. For example, the simplex is 
straight–line segment in a one–dimesional case, triangle 
in a two–dimensional case, and tetrahedron in a three–
dimensional case. Regular simplexes, whose tops are 
spaced equidistantly, are usually used for practical  

purposes. To determine the direction toward the 
extremum, the value of the goal function is measured at 
the tops of the simplex. Searching for the maximum we 
move from the top with the minimum value of the goal 
function to the opposite side of the simplex. The step in 
that search consists in proceeding from the "old" simplex 
to the "new" one by excluding the worst top and plotting 
its mirror reflection with respect to the side common for 
both simplexes. Multiple reflections of the worst tops 
result in a step–by–step movement of the simplex center 
toward optimum along some broken line. With the 
exception of the initial moment when we must calculate 
(or measure) k + 1 values of the goal function, each step 
needs only one calculation. 

The simplest algorithm based on the simplex of a 
constant size simultaneously provides for neither a high 
speed of movement at the beginning of the procedure of 
search nor an accuracy of finding the extremum at the 
final refining stage. Therefore, to achieve the extremum 
fast and accurately, algorithms were developed in which 
the size of the simplex changes in the course of search. 
One of the tops is retained at each step while the spacing 
of the tops is either decreased or increased. One may 
choose as a final top either a newly plotted top or a top 
with the maximum value of the goal function. The size of 
the simplex is usually changed following a power–law or 
exponential dependence. A simple expression relates the 
accuracy of finding the optimum, the initial size of the 
simplex, and the number of steps in the procedure. 
Indeed, as it was demonstrated in Ref. 1, the length of the 
simplex edge LN is related to the maximum error in 

finding the extremum ε
o
 and to the dimensionality of the 

control space k by the formula 
 

LN = ε
0
 

2κ
κ + 1

 . 

 

For example, prescribing the law of change of the edge 
length Ln as a function of the step number n in the form 

Ln = L
0
ε–ηn, where η = 

1
N ln 

L
0

LN
, it becomes easy to find 

the number of optimization steps N, if the initial length of 
the edge L

0
 is estimated in any possible way. To have an a 

priori estimate of L
0
, it is natural to use the relation1 

 

L
0
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X
2 + κ

 
κ (κ + 1)

2  , 
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where X is the characteristic size of the expected range of 
variation of the controllable coordinate. The empirically 
estimated value of L

0
 may be updated by solving the test 

problems of optimization. 
In this study we control the beam in a three–

dimensional space of the lowest–order optical aberrations. 
Here x

1
 = h is the tilt of the wavefront and x

2
 = Sx and 

x
3
 = Sy are the reciprocal radii of focusing in the 

orthogonal directions. Upon entering the nonlinear 
medium the beam phase is prescribed in the form 
 

u(x, y) = κ ( )θx + Sx 
x2

2  + Sy 
y2

2  , (1) 

 

where κ is the wave number and x and y are the 
coordinates in the plane of the medium movement. 

The beam propagation is described by the system of 
dimensionless equations for the complex amplitude of 
light field and for the perturbations of the temperature T  
 

2i 
∂E
∂z  = Δ

⊥
E + R

V
TE , (2) 

 

∂T
∂x = EE* , (3) 

 

in which the standard normalization is used for the 
variables.2 Here we employ the quasistationary 
approximation of the of heat transfer equation (2). It is 
valid for a regime of rare enough corrections of a 
continuous radiation wavefront so that the field is 
completely established for the time intervals between the 
subsequent corrections. 

We consider the case of optimizing the wavefront of 
a Gaussian beam for the path of length z

0
 = 0.5. We used 

the following criteria for the goal function of control in 
the image plane: 

peak intensity 
 

Jm = 
1
I
0

 max
x, y

 ⏐I(x, y, z
0
)⏐ , I = EE* ; (4) 

 

focusing criterion 
 

Jf = 
1
P

0

 ⌡⌠
 
 ⌡⌠

 
 exp( –(x2 + y2)) I(x, y, z) dxdy ; (5) 

 

integral of the squared intensity 
 

J
2
 = 

1
I
0
P

0

 ⌡⌠
 
 ⌡⌠

 
  I

2(x, y, z) dxdy , (6) 

 

where I
0
 is peak intensity upon entering the medium and 

P
0
 is the total beam power. 

 

NUMERICAL RESULTS 
 

As applied to the problem of optimization of the beam 
focusing into the nonlinear medium the simplex method can 
be most vividly illustrated in the case of control in the plane 
of two variables: Sx and Sy. In this case the trajectory of 

search can be easily plotted and analized. Since variations of 
the wavefront curvature result in changing the wind–
induced displacement of the beam from its optical axis in a 
moving medium, the goal function should be chosen in the 
form of the criterion, insensitive to the position of the 
energy centroid of the beam, i.e., Jm or J

2
. For illustration,  

Fig. 1 shows the procedure of search for the extremum of the 
peak intensity Jm on the basis of the simplex method (the 

best top is retained in each step). The range of variation of 
the controllable variables was 0 ≤ Sx and Sy ≤ 4, and the 

accuracy of finding the extremum ε was equal to 10%. In 
accordance with this, the initial size of the simplex was 
L

0
 = 2.5, the increment of the step size η = 0.55, and the 

number of steps N = 5. 
 

 
 

FIG. 1. Contour lines of peak intensity Jm in the plane 

of the variables Sx and Sy and the trajectories of search 

for the extremum: solid lines denote the simplex method 
and dashed lines – gradient methods (iteration steps are 
indicated by dots). Path is of length z

0
 = 0.5 and the 

parameter of nonlinearity RV = –28. 
 

For comparison, the same figure shows the trajectory 
of search for the extremum by the gradient method with a 
variable step size.3 It can be seen that the number of steps 
needed to reach the extremum with the prescribed 
accuracy is approximately identical for both methods, but 
the number of measurements of the goal function in the 
simplex method is 2–2.5 times less than that in the 
gradient method (each gradient step is accompanied by 
test measurements of the criterion of quality along every 
controllable coordinate). 

 

 
 

FIG. 2. Criterion of focusing Jf vs the number of its 

measurements M in the process of optimization . Solid 
line denote the simplex method, dashed line – gradient 
method. Path is of length z

0
 = 0.5 and the parameter of 

nonlinearity RV = –28. 
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When control is based on the focusing criterion Jf, 

which characterizes field localization within the given region 
in the image plane, the third controllable coordinate must be 
added – the angle of tilt of the beam θ. The dependence of 
Jf on the number of its measurements M in the process of 

optimization is shown in Fig. 2 for both the simplex and 
gradient methods. It can be clearly seen that the simplex 
method ensures faster rate of search for the extremum, which 
can be further increased improving the strategy of the 
search, e.g., it seems expedient starting from a certain step, 
to reflect the top, which has not yet been specularly 
reflected for the last κ + 1 steps instead of reflecting the 
worst top of the simplex.1 

The final results of optimizing the beam phase are 
listed in Table I. For brevity, the above–described 
algorithm is called "Simplex–1". 

As can be seen from the table the adaptive system of 
cross–aperture sensing intended to compensate for the 
stationary wind refraction on the simplex method ensures 
reliable finding of the maximum of the goal function with 
the prescribed accuracy. The main advantage of this 
method over the gradient one is a reduction of the number 
of measurements of the goal function by a factor of 1.5–2, 
so that the faster response rates can be achieved without 
any additional instruments. 

 

TABLE I. Results of comparison of correction of the 
stationary wind refraction 
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Parameters of 

radiation at the 
object 

 
Method of 

control 

 
Nonlinearity
parameter, 

RV 

 
The number of 
measurements 
of the goal 
function M  

Jf 

 

 

Jm 

Simplex –14 22 0.50 1.12 
 –28 24 0.31 0.61 

Simplex–1 –14 15 0.49 1.11 
 –28 16 0.30 0.56 

Gradient –14 36 0.49 1.14 
 –28 36 0.30 0.60 


