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Analytical formulas for the rms error, averaged over the receiving aperture, of 
reconstruction of the phase front with an account of the measurement noise of a 
Hartmann phase–front sensor are derived based on the spline approximation method 
using the normalized parabolic B–splines. An estimate of the correlation matrix of the 
vector of controlling signals of a flexible adaptive mirror is obtained for the Kolmogorov 
spectrum of turbulence. As a result, an optimal recurrent estimate for the controlling 
signal vector of the flexible adaptive mirror based on a piesoceramic plate is written. 

 
At present flexible adaptive mirrors based on 

piesoceramic plates are being widely used in the creation of 
adaptive optical systems designed to compensate for 
nonstationary phase distortions of the light beams propagating 
through a turbulent atmosphere. This is caused by two 
reasons. First, such mirrors have a wide frequency band and a 
large dynamic range of phase correction.1 Second, 
M.A. Vorontsov et al.2 proposed an efficient procedure for 
estimating the distribution of the residual error of phase-front 
approximation with such mirrors as functions of the shape and 
number of the controlling electrodes. It should also be noted 
that the response functions of such mirrors can be close to 
orthogonal Zernike polynomials, for which the authors of Ref. 
3 have derived analytical formulas, permitting one to 
substantiate the choice of the number of spatial modes for 
phase correction as functions of the required accuracy of the 
phase-front approximation under conditions of the Kolmogorov 
spectrum of phase fluctuations. By virtue of a specific nature 
of quadratic detection, the interference and the Hartmann 
sensors are usually used in the phase-conjugate adaptive 
optical systems as sensors of the phase front. This is due to the 
fact that the Hartmann method, which makes it possible to 
determine the value of the phase-front distortions based on the 
displacements of images of the object at the foci of the 
subapertures covering uniformly the aperture, appears to be 
the most promising method.4 In this case, based on the 
measured average tilts of the phase front within the 
subaperture Ωij, which are proportional, in general, to the 
quantities 

 

 (1)
 

 
where k is the wave number, Φ(õ, ó) is the function 
describing the phase distribution over the aperture, and 
n2 = M is the number of the subapertures, the vector of 
controlling signals of an adaptive optical system can be 
calculated.5 As shown in Refs. 2 and 3, an increase in the 
number of spatial modes, corrected by an adaptive optical 
system, results in a decrease of the phase–front 
approximation error. However, due to the fact that the 
least–squares method is employed in order to calculate the 
components of the vector of the controlling signals in real 
systems while the output signals from the phase–front 
sensor can be represented in the form 
 

 (2)
 

where n
x
ij , and n

y
ij are the components of the measurement 

noise, with increase in the number of the spatial modes N and 
in the variance of the noise σ2, the error in calculation of the 
vector of controlling signals caused by these factors will 
increase. A technique for optimizing the choice of the number 
of spatial modes of a phase-front corrector when these modes 
are described by orthogonal Zernike polynomials has been 
developed in Ref. 4. For the response function of an arbitrary 
shape this problem has not yet been solved. 

This paper is devoted to the development of a method for 
optimizing the choice of the number of spatial modes of an 
adaptive optical system using a system of normalized parabolic 
B–splines with an account of the measurement noise of the 
local phase-front tilts. 

Let us consider this problem as follows. Assume that on 
the aperture of radius R the Hartmann sensor measures the 
values of the partial derivatives of the phase front (2), which 
are proportional to the local phase–front tilts averaged over 
the subaperture Ωij. In so doing, we will use the Kolmogorov 
model of the turbulent atmosphere and will accept the 
hypothesis of "frozen–in" turbulence. We will describe the 
adaptive phase-front corrector in terms of a linear combination 
of its spatial modes 

 

U (x, y, A) = ( , ),i i

m

a x y Ψ∑  (3) 

 

where U(x, y, A) is the response of the mirror to the vector of 
controlling actions A with components ai, Ψi(x, y) is the lth 
spatial mode of the adaptive corrector, and N is the number of 
spatial modes. 

Determining the components of the vector A by means of 
the least–squares method and ignoring the noise components 
nx and ny, we can write a system of standard equations in the 
following form: 

 

DA = F, (4) 
 

where D is the quadratic matrix with elements dkl, 
 

 
 

A is the sought–after column vector of the controlling actions, 
and F is the column vector in the right side of Eq. (4) with 
components fk, 
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We hereafter will denote by parentheses the scalar product 
 

 (5)

 
 

where r = 
 
x2 + y2. We will prescribe the statistical 

properties of the noise components nx and ny in the form 
 

 (6) 

 

 
for arbitrary i, j, r, and s. 

 

where M[⋅] is the symbol of mathematical expectation and the 
averaging hereafter is carried out over the ensemble of 
realizations. 

One can easily verify the validity of Eq. (7) in the 
following way. Let the phase–front tilts be measured with 
the help of the Hartmann sensor with quadrant 
photodetectors and let the statistical characteristics of the 
output noise ni of each photodetector under condition of a 
strong signal obey the following relations: 
 

 (8)
 

 

where K1 is the correlation coefficient. 
Taking into account the fact that the signals 

proportional to the local tilts Ux and Uy are usually 
obtained in the form 

 

 (9)
 

 
and using relations (8), it is not difficult to verify that 
 

 (10)
 

 

and when K1 = 0, M[nxnx] = 4σ
n

2
 . 

Relations (10) mean that the measurement errors of the 
phase–front tilts are uncorrelated even in the case in which 
the noise of the quadrant photodetectors is correlated. 

With an account of expression (2), the system of linear 

equations (4) for estimation of the vector A∗ can be written in 
the form 

 

A∗ = D–1 
F∗, (11) 

 

where A∗ = A + Γ, Γ is the column vector of the estimate of 

the errors in determining the coefficients A and F∗ is the 
column vector with components 

. 
 

Let us find the statistical characteristics of the 
components of the vector Γ, namely, M[γk] and M[γk, γi]. 
Taking into account the linearity of system (11), we can write 

 

 (12)

 
 

where d
–1

kl   are the elements of the inverse matrix D–1, f
*
i   

are the components of the vector F∗, 
 

 (13)
 

 

In formula (13) the continuous scalar product has been 
replaced by its discrete analog, since the Hartmann sensors, as 
has already been indicated above, measure the average tilts of 
the phase front only at the aperture points. In this case, the 
total number of the subapertures M is proportional to n2. 
When considering the multipliers inside the braces of 
quadratic form (13) in detail, it turns out that by virtue of 
satisfying conditions (6) and (7) their product will be nonzero 
only when the subscripts sp and rt coincide. Thus, we can 
write 

 

 

 (14)
 

 

or based on Eq. (4) 

 

 (15)
 

 

In a matrix form Eq. (14), with the fact that D is 
symmetrical taken into account, can be written in the form: 
 

 (16)
 



902   Atmos. Oceanic Opt.  /December  1991/  Vol. 4,  No. 12 D.A. Bezuglov 
 

 

Thus, in order to calculate the covariation matrix 
elements of errors in the estimate of the vector A taking 
into account the measurement noise of the phase–front 
sensor, one must know the elements of the matrix D. In 
calculating the characteristics of a real adaptive system with 
a flexible mirror, it is necessary to analyze two cases. If we 
can describe the system of spatial modes of a phase–front 
corrector with the help of analytic functions, then the 
calculation of the elements of the matrix D in general is not 
difficult. And if we fail to express analytically the spatial 
modes of a phase–front corrector with sufficient accuracy, 
but their experimental measurements are available,3 then it 
is expidient to use the methods of numerical integration and 
differentiation. In this case, we can obtain good results 
using a well developed apparatus of spline functions. 

Let us analyze this problem in ample detail. Let the 
synthesized or experimentally measured spatial modes of a 
phase-front corrector be well–known. They can always be 
represented in terms of a system of normalized parabolic 5-
splines specified at the nodes of an immobile grid.6,9 
 

 (17)

 
 

where  
 

 
 

where h is the grid step. 
 

In such a representation the set of coefficients of the 
two–dimensional parabolic B–spline uniquely describes the 
kth spatial mode of the phase–front corrector. The system of 
the coefficients for the fcth spatial mode can be calculated by 
well-known methods, if one knows its values at the nodes of 
the spline collocation.6 On account of Eqs. (4) and (16), the 
values of the partial derivatives of the kth spatial mode 
∂Ψk(x, y)

∂x
 can be given by 

 

+

 

 (18)
 

 

Let us introduce the notations 
 

 

 

 (19)
 

 
After simple, though quite cumbersome calculations, it 

can be shown that the elements of the matrix D can be 
calculated in terms of the splines according to the following 
formula: 
 

 

 (20)
 

 

The scalar product 
 

 (21)

 
 

can be calculated in an analogous way. 
The response of the phase–front corrector reconstructed 

from the measurements of the Hartmann sensor with an 
account of the measurement noise, can be written in the form 
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 (22)
 

 

In what follows the error due to the phase–front corrector 
can be determined by 

 (23) 

 

It is obvious that M[ΔU]  = 0, and in order to obtain the 
final estimate of the error due to the measurement noise, we 
must calculate M[ΔU2] from the formula 
 

 (24)
 

 

By subsituting Eq. (15) into Eq. (24) we finally obtain 

 

 (25)
 

 

After averaging Eq. (25) over the aperture S we can derive 
the formula for the rms error of correction 
 

 (26)
 

 

where bki are the scalar products 
 

 
 

The coefficients dki in Eq. (26) can be calculated from 
Eqs. (18), (19), and (20). The values of bki can be calculated 
in terms of the B–splines. It is obvious that the specific values 
of the spline coefficients will depend on the shape of the 
phase-corrector spatial modes Ψk(x, y). 

Analysis of Eq. (26) shows that, as the number of 
the spatial correction modes increases, the error caused by 
the measurement noise with variance σ2 also grows. This 
is due to the fact that in general rtonnegative terms are 
added to sum (26). 

The error variance of the phase-front approximation in 
the case of the Kolmogorov spectrum of turbulence for the 
adaptive mirror corrector with arbitrary response functions 

σ
2

ap
 can be easy calculated based on an efficient technique, 

which has been developed in Refs. 2 and 3. For this reason, 
the number of spatial modes of the phase corrector in a real 
adaptive system must be chosen by means of the well–
known optimization methods from the condition that the 
total variance be minimum 
 

 (27)
 

 

In order to calculate the matrices of the second–order 
moments of the spatial modes of the phase–front corrector 
W with elements M[ai aj], we can make use of the relation 

 

 (28)
 

 

where 
 

 
 

However, in practice it would require much computation 
time. Taking into account the fact that appropriate relations 
for Zernike polynomials in the case of the Kolmogorov 
spectrum of the phase fluctuations have been obtained in 
Ref. 7, the results of those calculations can be used to 
estimate the coefficients Wik for an arbitrary phase–front 
corrector. Let us write the corrector response in the form 
 

 (29)
 

 

where gij are the coefficients of the expansion of the ith 
spatial mode of the phase–front corrector in a system of 
orthogonal Zernike polynomials, Nz is the number of 
orthogonal Zernike polynomials, and zj(x, y) are Zernike 
polynomials. As Nz → ∞ relation (29) becomes an identity. 
Changing the order of summation operations, we can write 
relation (29) in the form 
 

 (30)
 

 

where Cj are the components of the vector Ñ, Ñ = GA, and 
G is the N × Nz matrix of transition from Zernike basis to 
the basis of the spatial modes of the phase–front corrector. 
The matrix of the second-order moments of the phase–front 
expansion in the system of spatial modes of the phase-front 
corrector can be then written in the form 

 

W = CTA1C, (31) 
 

where A1 is the correlation matrix for Zernike coefficients 
and the components a1ij. Thus, for a 13–electrode corrector 
based on a piesoceramic plate, the transition matrix has 
been calculated in Ref. 8. Using the results of these 
calculations and the results published in Ref. 7 we can 
calculate the matrix of the second-order moments of the 
phase-front expansion. Knowing the covariation matrix W 
and the correlation matrix for the measurement noise G, we 
can write the recurrent algorithm for optimizing discrete 
estimate of the vector A in the ith step10 

 

 (32)
 

 (33)
 

 

where Ki is the covariation matrix for the estimate A, 
K1 = W, and I is the unit matrix. 
 

CONCLUSIONS 
 

The developed method for optimizing the choice of the 
number of spatial modes with an account of the noise of the 
Hartmann sensor makes it possible to restrict the number of 
degrees of freedom of an arbitrary phase–front corrector,  
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starting from the specific conditions of operation of an 
adaptive optical system. In so doing, it turns out that, in 
order to reduce the variance of the error caused by the 
measurement noise, one must, in general, increase the 
number of the quadrant photodetectors of the Hartmann 
sensor. Due to the use of the spline–approximation method, 
a possibility arises to calculate, with sufficient degree of 
accuracy, by means of the numerical analytical method, the 
elements of the matrix D of a normal controlling system in 
terms of linear combination of the coefficients of normalized 
B–spline. Meanwhile, in order to construct a spline, one 
can use both the values of the response functions at the 
collocation nodes and the values of their partial derivatives 
as an a priori information.6 It should be noted that when 
considering the measurement noise we took into account 
only the thermal noise with zero mean, which, in general, 
corresponds to the case of a strong signal. The quantum 
noise and the noise due to the signal integration during a 
finite time of measuring the phase–front local tilts, should 
be taken into account individually, e.g., using the technique 
used in Ref. 4. It should be noted also that, along with 
adaptive mirrors based on a piesoceramic plate, this method 
can be employed for optimizing the adaptive optical systems 
with membrane mirrors controlled by various actuators. 
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