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The distribution laws for the atmospheric transmission in the visible and IR 
regions have been found from the analysis of experimental data on CO2–laser 

radiation attenuation and meteorological visual range.  
 

The effeciency of atmospheric laser systems (ALS) is 
determined, to a considerable degree, by an actual state of a 
medium in which an optical radiation propagates. This 
aspect became one of the reasons for an extensive 
development of the methods for predicting the "optical 
weather"1 the main component of which is the atmospheric 
transmission T – a key parameter for estimating the ALS 
operation reliability.2  

The transmission is related to the medium's extinction 
coefficient for an optical wave at λ = 0.55 μm through the 
relation  
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where SM is the meteorological visual range (MVR), L is 

the path length, and α (0.55) is the extinction coefficient.  
For the waves in the near–IR region lying in the 

atmospheric transmission windows such a relationship 
primarily caused by aerosol scattering of radiation aerosol 
can be represented in the form 3  
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where q = 0.585S1/3

M
 for SM ≤ 6 km and q = 1.3 for SM > 6 

km.  
Relations (1) and (2) reveal that it is critically 

important to study statistical characteristics of the MVR. 
The bibliography in Refs. 4 and 5 reflects the efforts 
undertaken in this direction. However, the problem on the 
MVR distribution law and its dependence on a geographic 
region has not yet been solved.  

This paper deals with study of temporal statistical 
regularities and the laws of the MVR distribution for the 
following regions of the European part of the USSR: 
Leningrad, Ul'yanovsk, Moscow, and Odessa (the names of 
the cities are given in chronological sequence of processing the 
observational data).4–8 Many years of observations of the 
MVR from meteorological stations in the airports of the cities 
were used as the starting data. Total numbers of observations 
for these cities were n1 = 122736, n2 = 18922, n3 = 87219, and 

n4 = 122567, respectively. All the recorded MVR values were 

divided into 14 intervals: 0–0.1, 0.1–0.2, 0.2–0.4, 0.4–0.6, 
0.6–0.8, 0.8–1.0, 1.0–1.2, 1.2–1.6, 1.6–2.0, 2.0–2.4,  
2.4–3.2, 3.2–4.8, 4.8–8, and ≥ 8 km. Such gradations of SM 

were chosen following the recommendations of the 
International Civil Aviation Organization (ICAO) in order to 
provide a possibility of using in our subsequent studies the 
data from meteorological stations of international airports 
which are more precise and frequent compared to the  

observations at ordinary meteorological stations conducted 
only several times a day. Moreover, this set of intervals is 
sufficientlly dense and, hence, allows one to construct a 
polygon of stored occurence frequencies with the accuracy 
sufficient for practical calculations of the effect of a 
propagation medium on the ALS parameters.  

To find the analytical law of the MVR distribution we 
examined five theoretical distribution functions (truncated–
normal, logarithmic–normal, Rayleigh, Reuss, and Johnson) 
including those used elsewhere9–11 for studying statistical 
characteristics of the MVR.  

The processing of observational data on SM for the 

first two cities was carried out using the technique from 
Ref. 4. It was elucidated that in Leningrad for winter 
months and for annually mean experimental distribution of 
the MVR the best approximation is the Rayleigh 
distribution while for summer months it is the Reuss 
distribution. A modified Reuss distribution4  
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was suggested as an approximation distribution for all 
months.  

Here σ = 
2

π
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 with 
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 = 
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SM, I0(⋅) is the Bessel function, and a is a regualating 

parameter. In this case a = 
⎩
⎨
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–
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 < 9 km ,
i.e., under 

complicated conditions for the ALS operation distribution (3) 
is reduced to the Rayleigh.  

Observations in Ul'yanovsk7 confirm the choice of 
such an approximation for the month distributions of the 
MVR. At the same time distribution (3) turned out to be 
useless for approximating the annually mean and the 
majority of monthly empirical polygons in Moscow and 
Odessa. Other mentioned–above distribution functions were 
also inadequate. Therefore, an additional statistical data 
processing based on the use of the system of the Pearson 
distributions for the approximation to be made was 
accomplished. A comprehensive treatment8 showed that the 
best approximation of the empirical polygons for winter 
months in all regions is the modified beta–distribution  
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where  
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are the distribution parameters, 
–
DSM

 is the SM variance, and 

SM = 12 km is the accepted upper limit of the last interval 

of the SM values. The beta–distribution is also the best 

approximation of the annually mean polygons for Moscow 
and Odessa. The annually mean polygons for Leningrad and 
Ul'yanovsk as well as the polygons for summer months in 
all of these cities are approximated through a modified 
Reuss distribution.  

The type of the distribution to be used was determined 
depending on the coefficient of asymmetry  
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where 
–
μ3 is the third central sampling moment, i.e., for 

–
γ 1 < 0 

the best approximation is beta–distribution and for 
–
γ 1 > 0 it 

is a modified Reuss distribution, when 
–
γ 1 = 0 the accuracy of 

approximation by both of these distribution is roughly equal. 

After passing over to the law of the atmospheric 
transmission distribution let us limit our discussion by the 
situation which is most unfavorable for the ALS, i.e., when an 
actual distribution of the MVR is represented by the Rayleigh 
distribution law (Eq. (3)). By making a transformation of the 
Rayleigh distribution according to Eq. (1) we obtain for 
λ = 0.55 μm the probability density function for the value T  

 

ω (T) = 
γ

T lnT exp ( ) – 
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2  , (5) 

 

where γ = 
( )3.9L 2

σ2 ln2T
 and σ is the parameter of the initial 

Rayleigh distribution.  
Since the value T has a physical meaning only in the 

interval 0 ≤ T ≤ 1, it is necessary to use in calculations 
truncated distribution (5) in the form  
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The form of the distribution T in the entire visible 
range will be slightly different from Eq. (6) because the 

variable 
⎝
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 are close to unity in this range.  

 

 

 
 

FIG. 1. Empirical (stepwise curve) and theoretical distribution functions for T (λ = 0.55 μm and L = 1 km). 1 – 8) 
numbers of curves corresponding to the numbers of distributions in the text and 9) distribution (6).  
 

The results of calculations by formula (6) are shown in 
Fig. 1. In the same figure, as well as in Figs. 2 and 3, are 
depicted using the data from Ref. 4 and Bouguer's law the 
annually mean empirical polygons of stored occurrence 
frequencies for the transmission.  

As can be seen from Figs. 2 and 3, an increase of the 
length of hypothetically chosen paths makes the form of 
polygons simpler and their linearization is observed. This  

makes it possible to assume the presence of a simpler 
approximation than relation (6). To elucidate this, we 
have analyzed eight distributions (truncated Weibull,1 
modified arcsin,2 truncated exponential,3 truncated 
Rayleigh,4 truncated Maxwell,5 truncated normal,6 beta–
distribution,7 and truncated logarithmically normal8) 
which are shown in Fig. 1. 
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FIG. 2. Probabilistic distribution of T for λ = 0.53 μm and L = 1, 5, 10, and 20 km (curves 1, 2, 3, and 4, respectively). 1) 
exponential distribution and 2, 3, and 4) distribution (7) with the values of the parameter r(λ, L) = 1/2, 1/3, 1/5, and 1/7, 
respectively.  
 

As the analysis has shown distribution (6) approximates 
the polygon T (Fig. 1) more accurately according to the 
Kolmogorov criterion. Satisfactory results for L ≥ 5 km are 
also provided by a modified truncated Weibull distribution 
(Figs. 2 and 3)  

 

F(T) = 

1 – exp 
⎣
⎡

⎦
⎤ – 

⎝
⎛

⎠
⎞T

mT

r(λ , L)

1 – exp [ ] – m
–r(λ , L)
T

 , (7) 

 

where r(l , L) = L
1.38 exp( – λ)

 is the distribution parameter. 
The results are valid for the visible and the near–IR. 

However, relation (2) used for the middle IR leads to a 
significant error, it is particularly true for λ = 10.6 μm which 
is promising for the ALS. This error at λ = 10.6 μm is mainly 
due to the effect of continuous absorption of radiation by 
water vapor. Therefore, to determine statistical characteristics 
of the transmission at this wavelength we used the 
measurements of the attenuation of a CO2–laser radiation 

performed in Voeikovo (Leningrad region) during three years 
and different seasons.13 The total number of measurements 
amounted 19062, 18387 of which were made in hazes of 
different density. The procedure for processing the 
measurement data with the extraction of the aerosol 
component of attenuation was described in detail in Ref. 14. 
The statistical characteristics of transmission were computed 
and the distribution functions were constructed (Fig. 4) for 
the same hypothetical path lengths. Figure 4 shows that the 
truncated Weibull distribution (7) with the regulating 

parameter r = 2 
 λ
 L describes best of all the distribution of 

experimental data starting with L g 5 km both in the visible 
and the near–IR. This can be explained by different ratio of 
the radiation wavelengths to the aerosol particle size in these 
regions.  

To find the transmission distribution law for the entire 
depth of the atmosphere along the slant paths we used the 
data of actinometric observations for which it is convenient to 
write the integral transmission in the form  

T = 
IS
I0

 = 

⌡⌠
0

∞

I0(λ) T(λ) dλ

⌡⌠
0

∞

I0(λ) dλ

 , (8) 

 

where Is and I0 are the solar radiance near Earth's surface 

and in the free space, respectively; I0 = 1370 W/m2 is the 

solar constant.  
For the dependence of the measured value Is0

 on the 

solar height (angle of elevation Ω) to be taken into account 
we introduced a relative transmission  

 

TS = 
Is0
I0

 , (9) 

 

where Is0
 is the integral solar radiance near Earth's surface for 

an ideal atmosphere, the extinction of solar radiation in which 
is reduced only to scattering and, resulting thus in 
Sì = Sìmax.  

The value Is0
 is related to the solar constant I0 at the 

sea level with the Forbs effect15 taken into account through  
 

Is0
 = I0 ( )1.04 – 0.160 l  , (10) 

 

where l is the relative length of a slant path (the number of 
optical masses)  
 

l = 
1
H ( )H2 + 2RH + R2 sin2Ω – R sin Ω  , (11) 

 

where R = 6384 km is Earth's radius, H = 8.0 km is the 
depth of the homogeneous atmosphere.  

Using Eqs. (8) and (9) we obtain  
 

T = Ts T0 , (12) 
 

where T0 = 
Is0
I0

 .  
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FIG. 3 Probabilistic distributions of T for λ = 1.06 μm and L = 1, 5, 10, 20, and 50 km (curves 1, 2, 3, 4, and 5, 
respectively). 1) exponential distribution, 2, 3, 4, and 5) distribution (7) with values of the parameter r(λ, L) = 1/2, 1/3, 
1/5, and 1/7, respectively.  

 
 

FIG. 4. Empirical (stepwise) curve and theoretical function 
of the distribution of the atmospheric transmission for 
λ = 10.6 µm: solid lines – experiment and dashed lines – 
theory. 1) L = 50, 2) L = 20, 3) L = 10, and 4) L = 5 km.  

 

In Eq. (12) T0 is a determined value depending on Ω 

alone while Ts is a random value determining variations of the 

transmission T.  
A computerized processing was carried out of the data of 

daily standard observations of Is conducted during 

actinometric monthly measurements and of the corresponding 
values Ω found during the same measurements made in 
Leningrad region for three years (1980-1982). The range of Ts 

values calculated using Is and Ω was divided into 19 intervals 

from 0 to 1. The subsequent processing of calculational data 
was performed by the procedure described in Ref. 8.  

The analysis of the general set of data revealed two 
characteristic situations that occurred during actinometric 
observations. The first situation includes the cases where the 
sun is trunslucent through the clouds and the atmospheric 
transmission is mainly determined by absorption and scattering 
in the clouds, the values of Ts varying from 0 to 0.1. The 

second one is related to the aerosol absorption and scattering 
in hazes when the solar disk is not covered with clouds and in 
this case the values Ts are in the range from 0.1 to 1.0. For 

the first situation the best chi–square approximation for 
empirical transmission distributions is the truncated Rayleigh 
distribution (Fig. 5), and for the second one it is the modified 
beta–distribution (Fig. 6).  

 

 
FIG. 5. Empirical (stepwise curve) and theoretical functions of the atmospheric transmission distribution along the slant paths 
for the first situation.  
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FIG. 6. Empirical (stepwise curve) and theoretical 
functions of the atmospheric transmission distribution 
along the slant paths for the second situation.  

 
CONCLUSIONS  

 
1. The truncated Weibull distribution was found to be a 

good approximation for the empirical distribution of the 
atmocpheric transmission along horizontal paths both in the 
visible and IR regions.  

2. Along slant paths the transmission is better 
approximated by the truncated Rayleigh and modified beta–
distributions.  
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