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Statistical characteristics of the sound waves, propagating through the moving 
media with random sound speed, density, and velocity inhomogeneities, are calculated 
in the Born approximation using the geometric–acoustics approximation and the 
methods of smooth perturbation and parabolic equation as well as theory of multiple 
scattering. A new method for remote sounding of the atmospheric humidity 
fluctuations is proposed.  

 
Theory of the sound wave propagation through the 

media with random fluctuations of sound speed c has been 
well developed in literature. However, only fragmentary 
results have been obtained describing the effect of 
fluctuations in the medium density ρ and in the velocity of 
the moving medium v on the sound field. In this paper we 
develop theory of the sound wave propagation through the 
media with randomly inhomogeneous c, ρ, and v. In ample 
detail the results of this theory have been presented in 
Ref. 1. 

Note that the random density and wind speed 
inhomogeneities must always be taken into account when 
calculating the statistical characteristics of the sound field 
in the turbulent atmosphere. Meanwhile, the amplitude and 
phase fluctuations of the sound wave, propagating through 
the ocean, are mainly associated with the inhomogeneities in 
c. Sometimes a significant contribution to the scattered field 
comes from random density fluctuations and from the 
velocity of currents.  

When constructing the theory of sound propagation in 
randomly inhomogeneous moving media, we start from the 
following equation:2  
 

(Δ + k2)p +  
 

+ 
⎣
⎡

⎦
⎤k2ε – 

⎝
⎛

⎠
⎞∇ ln 

ρ
ρ0

∇ – 
2i
ω  

∂νi

∂xj
 

∂2

∂xi∂xj
 + 

2ik
co

 V ∇ p = 0 , (1) 

 

where p(R) is the sound pressure, R = (x1, x2, x3) = (x, y, z) 

are the Cartesian coordinates, k = ω/c0 is the wave 

number, ω is the frequency, c0 and ρ0 are the mean values 

of c and ρ, ε = c2
0/c2 – 1, v = (ν1, ν2, ν3) is the velocity of 

the moving medium, and the recurring subscripts denote 
summation. When deriving Eq. (1) we neglect the terms of 
the order of (ν/c)2 in calculating the moments of the 

quantity p. We set c = c0 + c
∼
 and ρ = ρ0 +  in Eq. (1). The 

fluctuations in the temperature T
∼
 and in the concentration C

∼
 

of the component, dissolved in the medium (water vapor in 
air or salt in ocean water) are primarily responsible for the 

fluctuations in the sound speed c
∼
 and in the density . To 

within the terms of the order of T
∼
 and C

∼
 we have  
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where T0 is the mean temperature, while  
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In the right sides of these relations we give the values of the 
coefficients βc, ρ and ηc, ρ for the atmosphere and for the ocean 

(in parentheses). Here C is the concentration of the 
component, dissolved in the given medium (in the atmosphere 
the partial water–vapor pressure e is related to C in the 
following way: e/P = 1.61 C, where P is the air pressure).  

Assuming that <T
∼

νi> = <C
∼

νi> = 0 and using relation 

(2), we can derive from Eq. (1) the following relation for 
the scattering cross section σ of sound wave in a randomly 
inhomogeneous moving medium:3,4  
 

σ(n – n0) = 2πk4[β2(θ)ΦT(k)/4T0
2 + β(θ) η(θ) ΦCT(k)/2T0 + 

 

+ η2(θ)ΦC(κ)/4 + cos2θ⋅cos2
θ
2⋅F(k)/c0

2 ], (4) 

 

where κ = k(n0 – n), n0 and n are the unit vectors in the 

direction of incident and scattered waves; θ is the angle 
between these vectors; ΦT, ΦC, and F are the three–

dimensional spectral densities of the fields from T
∼
, C

∼
, and v; 

ΦCT is the cross–spectral density of the fields C
∼
 and T

∼
; and 

β = βc + 2β
ρ
sin2 θ

2, and η = ηc + 2η
ρ
sin2 θ

2. In the inertial interval 

of the turbulence spectrum the relation for σ takes the form  
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Here C2
T, C2

C, and C2
ν
 are the structure constants of the 

random fields T
∼
, C

∼
, and v; CCT is the structure constant of 

the cross–spectral density of the fields C
∼
 and T

∼
; and Γ is 

the γ–function.  
For C2

C = CCT = 0 as well as for the case, in which the 

sound is scattered in a turbulent atmosphere at β = cosθ, 
relation (5) transforms into the relation for σ which has 
been derived by Monin.6 Note that in Ref. 7, as well as in 
some other papers, scattering of sound on the humidity 
fluctuations was examined only qualitatively. This leads to 
the incorrect coefficients 2β2ηc/T0 and β2η2

c in front of the 

structure constants CCT and C2
c in Eq. (5).  

Since in the atmosphere the coefficients β = cosθ and  
η = –0.16 + 0.61 cosθ, it follows from Eq. (5) that the 
sound wave is scattered at the right angle only on the 
humidity fluctuations. This result is of principal 
importance. Indeed, using a bistatic configuration of the 
acoustic sounding system and measuring the scattering cross 
section σ(θ = π/2) = 1.45⋅10–2⋅(ηc + η

ρ
)2k1/3C2

C, one can 

determine the structure constant C2
C.  

Let θ1 and θ2 denote the angles θ which are close to 

π/2 for which the term (3/22) η2C2
C in the braces of 

Eq. (5), is equal to cos2θ cos2(θ/2)C2
ν
/c2

0. It is obvious that 

scattering on random humidity fluctuations will make the 
main contribution to the sound field scattered at the right 
angle providing the angular half–width of the transmitted 
beam ϕ is smaller than or of the order of |θ1 – θ2|/2. 

Determining the values of the angles θ1 and θ2, we obtain  
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2
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In the near–water atmospheric layer the quantity C2
C equals 

∼ 2.5⋅10–7 m–2/3 (Ref. 5) and, apparently, may exceed C2
T/C2

0. 

For b = 1 it is possible to measure C2
C, if ϕ <∼ 5.3°.  

In the ocean under conditions of small–scale 
inhomogeneities, whose size does not exceed several meters, 
in accordance with Ref. 8, C2

T / T2
0 vary within the limits 

2⋅10–10 – 2⋅10–6 m–2/3. Accounting for the fact that in 
the ocean the turbulent energy dissipation rate  
ε = 10–7–10–4 m2/s3 (see Ref. 9) we determine the range 
of variation of the ratio  

 

C
ν
2/c0

3 = 
1.9ε2/3

c0
2  : 2⋅10–11 – 2⋅10–9m–2/3 . 

 

Thus, the ranges of variation of C2
T/T2

0 and C2
ν
/c2

0 overlap. 

Moreover, the numerical coefficient in front of C2
T/T2

0 in 

Eq. (5) equals 0.1 – 0.3. For this reason, in the ocean 
sound scattering on the fluctuations of the velocity v of the 
moving medium may be significant in some cases. As regards 
sound–wave scattering on the density fluctuations, it 
follows from Eqs. (3) and (5) that it intensifies as the angle 
θ increases and may be about ∼10% of the scattering on the 
sound speed fluctuations.  

The inner scale of turbulence l (the size of the smallest 
inhomogeneities ) in the atmosphere is of the order of 1 mm 
and is smaller than or near 1 cm in the ocean. For this 
reason, in acoustics the sound wavelength λ . l virtually 
for all frequencies employed. Let λ n L, where L is the 
outer scale of turbulence (the size of the largest 
inhomogeneities). Then, since the main portion of the 
turbulent energy is concentrated within the region of large 
scales of turbulence the amplitude and phase fluctuations of 
the sound wave in the direction of propagation of the 
undisturbed wave are mostly caused by the large–scale 
inhomogeneities while the small–scale inhomogeneities 
result in relatively weak sound scattering in all directions. 
We will more rigourously justify this statement with the 
help of the multiple scattering theory. Thus, if l n λ n L 
then in calculating the statistical characteristics of the field 
in the direction of propagation of undisturbed wave, the 
random inhomogeneities may be regarded as the large–scale 
ones in comparison with λ. In this case it is reasonable to 
transfer from Eq. (1) to the parabolic equation  
 

2ik 
∂A
∂x + Δ

⊥
A + k2εef A = 0 . (6) 

 

Here A is the complex amplitude, which is related to p by the 
formula p(R) = A(R)eιkx; the x axis coincides with the 
direction of wave propagation, and the function εef = ε –

 2νx/c0. Relation (6) coincides with the parabolic equation for 

sound and electromagnetic waves in a stationary medium, in 
which the function ε plays the role of the function εef. For 

this reason, in the parabolic–equation approximation (and, 
consequently, in the geometric–acoustics approximation and in 
the method of smooth perturbations) the relations for the 
statistical moments of the quantity p in the moving medium 
agree with the analogous well–known relations for the 
moments of p in the stationary medium, if only the structure 
function Dε(R) of the random field ε or its three–dimensional 

spectral density Φε(κ) is replaced by the structure function 

Def(R) of the random field εef or by its three–dimensional 

spectral density Φef(κ).  

This result is valid for the arbitrary randomly 
inhomogeneous moving medium. For locally homogeneous 
and locally isotropic random fields ε and v as well as for the 
inertial interval of turbulence the functions Def(R) and 

Φef(κ) = Φef(κx, κ
⊥
) can be specified10  

 

Def(R) = Dε(R) +  

4
c0
2 [sin2α⋅Dtt(R) + cos2α⋅DRR(R)]= CN

2
 R2/3

 ; 

 

Φef(0, κ⊥) = Φε(0, κ⊥) + 
4F(k

⊥
)

c0
2  = 

5 3 Γ(2/3)
36π2  Cef

2  k
⊥  

–11/3 , (7) 

 
where  
 

CN
2 = Cε 

2 + 4( )1 + sin2 α
3  

C
ν
2

c0
2  ,  Cef

2  = Cε
2 + 

22
3  

C
ν
2

c0
2  , 

 

Cε 
2 = βc 

2 
CT

2

T0 
2  + 2ηc βc 

CCT

T0
 + ηc

2 Cc 
2 . (8) 

 

In relations (7) – (8) α is the angle between the vector R 
and the x axis, Dtt and DRR are the transverse and  
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longitudinal structure functions of the random field v, C2
ef is 

the effective structure constant, and C2
N is the structure 

constant of the random field εef.  

For the case of sound propagation through the 

turbulent atmosphere it is well known
11,12

 that it is possible 
to introduce of the effective functions Def and C2

N in the 

geometric–acoustics approximation and smooth perturbation 
method. . However, it is conventionally assumed in 
literature that the angle α = 0 in formulas (7)–(8). This 
assumption results in incorrect values of the functions Def 

and C2
N as well as in the fact that the coefficient in front of 

C2
ν
 in the relation for C2

ef turns out to be equal to 4, rather 

than to 22/3. Note that we introduce the effective 
functions Def, C

2
N, and so on, not only in the geometric–

acoustics approximation and in the smooth perturbation 
method, but also in a more general parabolic–equation 
method. Moreover, these functions are introduced in our 
examination of the sound propagation through an arbitrary 
randomly inhomogeneous medium.  

The effect of regular refraction on the statistical 
moments of the sound field in the randomly inhomogeneous 
moving medium was examined in Ref. 3 in the Markovian 
approximation of the parabolic–equation method.  

Let us consider a single–point sound source, which is 
located at the point R

0
. The field of this source G(R, R

0
) 

obeys Eq. (1) with the function (1 + iv(R
0
) ∇/ω)δ(R – R

0
). 

For |R – R
0
| . L the effect of the random vector v(R

0
) on the 

moments of G is negligible. In this case, from Eq. (1) we 
proceed to the equivalent integral equation  
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where G
0
(R) = –exp(ikR)/4πR and ∇′ = 

δ
δR′. When 

constructing our theory of multiple scattering, we start from 
Eq. (9) with the functions ε and ln(ρ/ρ

0
) given by Eq. (2). 

Let us go over to a spectral representation of all functions 
entering into Eq. (9). We will write the solution of this 
equation in the form of a series of the perturbation theories 
and make use of the diagram technique. As a result, for the 
spectral density of the mean Green's function G we succeed 
in obtaining the Dyson equation. Solving it and then 
calculating the function G, we find  
 

G(⏐R – R0⏐) = –exp(ikNef⏐R – R0⏐)/4π⏐R – R0⏐. (10) 
 

The quantity Nef, which enters into this relation, may be 

treated as the effective refractive index of the randomly 
inhomogeneous moving medium. The value of Nef has been 

calculated in the Burre approximation. The imaginary part 
of Nef defines the extinction coefficient γ of the mean field 

in the randomly inhomogeneous moving medium  
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For βc = –β
ρ
 = 1 (propagation of sound through the 

atmosphere) and for ηc = η
ρ
 = 0 formula (10) has been also 

derived by another method in Ref. 13.  
Let the size of the largest inhomogineities in the 

medium L . λ. We also assume that the spectral densities 
Φ

T
(κ), F(κ), etc., decrease not too slowly with increase of κ 

(such spectral densities are, e.g., the Gaussian spectral 
densities as well as the power–law spectral densities, 

proportional to (κ
2
 + 4π

2
/L

2
)
–ν

 for ν > 1). In this case, the 
main contribution into γ comes from integrating over the 
range of small κ, corresponding to the inhomogeneities with 
d . λ, while the effect of small–scale inhomogeneities with 
d n λ is negligible.  

For the spectral density of the coherence function 
<G(R, R

0
)G∗(R′, R0)> of the sound field from two single–

point sources the Bethe–Salpeter equation has been derived. 
Starting from it, we derive the equation for the spectral 
density b(κ, κ′) of the correlation function  

 

B(R, R′) = <[p(R) – p
–

(R)][p*(R′) – p
–

*(R′)]> = 
 

= ⌡⌠ ⌡⌠ d3kd3k′ exp(ikR – ik′R′) b(k, k′) 

 

of the arbitrary sound field p(R). An equation for the function 
b is a rigourous consequence of Eq. (9) and has the form  
 

[a(κ) – a∗(κ′)] b(κ, κ′) = (1/a∗(κ′) – 1/a(κ′)) × 
 

× 
⌡⌠

 

⌡⌠
 d3

κ1d
3
κ2Λ(κ, κ′, κ1, κ2) [b(κ1, κ2) + Π

–
(κ1) Π

–
 

∗

 (κ2)] .(11) 

 

Here a = k2 – κ2 – D(κ). The functions , D, and Λ are the 

spectral densities of the mean field p
–

(R) and of the mass–
operator and the intensity–operator kernels, respectively. 
The functions D and Λ can be represented by infinite series 
in terms of all strongly coupled diagrams. Retaining only 
the first terms in these series, i.e.,using the Burre 
approximation and the ladder approximation, we find  
 

D(k) = ⌡⌠ d3k1U(k, k1, k′)/(k2 – k1
2) ; (12) 

 

Λ(κ, κ′, κ1, κ2) = δ(κ – κ′ – κ1 + κ2) W(κ, κ1, κ′) . (13) 
 

Here the function W is given by the relation  
 

W(κ, κ1, κ′) = [k2βc – κ0κ1β
ρ
] [k2βc – κ0(κ′ – κ0)β

ρ
] ×  

 

× ΦT(k0)/T0
2 + 4[k2 + k0k1][k

2 + k0(k′ – k0)] × 
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× [κ1κ′ κ0
2 – (κ0κ1)](κ0κ′)F(κ0)/ω2κ0

2 , (14) 
 

where κ0 = κ – κ1 and for the simplicity we assume that 

ΦC = ΦCT = 0. The value of the function W for ΦC ≠ 0 and 

ΦCT ≠ 0 has been given in Ref. 1. The function U(κ, κ1, κ′) 

coincides with W , if only –κ′ and –F are substituted for κ′ 
and F in the right side of Eq. (14). Note that one fails to 
regourously solve Eq. (11).  

Let us introduce the summary R+ = (R + R′)/2 and 

difference R– = R – R′ coordinates of the observation 

points R and R′ as well as denote the correlation function 
by Bp(R+, R–) = B(R+ + R–/2, R+ – R–/2). The last 

function Bp may be represented in the form  
 

Bp(R+, R–) = ⌡⌠ � dΩ(n) e
iknR– J(R+, n) ,  

 

where Ω(n) is the solid angle in the direction of the unit 
vector n, and the function J(R+, n) may be interpreted as a 

ray intensity of the sound field at the point R+ in the direction 

of unit vector n. Let us now assume that the variation scale of 
the function Bp(R+, R–) along the R+ coordinate exceeds that 

along the R– coordinate. We also employ Burre 

approximation (12) and ladder approximation (13). As a 
result, equation (11) reduces to the radiative transfer equation  
 

⎝
⎛

⎠
⎞n 

∂
∂R+

 + 2γ  J(R+, n) = ⌡⌠ � dΩ(n0) J(R+, n0) σ(n – n0) + 

 

+ π/2 ⌡⌠ d3k0W(kn, k0, kn) × 

 

× ⌡⌠ d3K eiKR + Π
–

(k0 + K/2) ⋅Π
–

∗(k0 – K/2) , (15) 

 

which describes the radiant intensity J.  

In Eq. (15) σ(n – n0) = 
π
2 W(kn, kn0, kn) is the 

scattering cross section of the sound wave, given by  

relation (4). Although one fails to regourously solve the 
radiative transfer equation (15), there are different well–
known approximate and numerical methods for solving it. For 
example, if the value of the scattering cross section σ(n – n

0
) 

rapidly decreases as the angle θ between the vectors n and n
0
 

increases, then equation (15) can be solved in the small–angle 
approximation. Note that for Kholmogorov's turbulence 
spectrum as well as when the inequality λ n L is valid, the 
quantity σ rapidly decreases as θ increases, no matter if the 
sound wavelength is shorter or longer than the internal scale 
of turbulence.  
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