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The possibility of using the linear filters in the problem of restoration of the 

images distorted by the optically dense scattering formations of the atmosphere has 
been investigated. Using a spatially bounded object as an example it has been shown 
that for real digitized images, which incorporates a noise component, an application of 
smoothing of the solution is required in order to compensate for the quality losses 
caused by noise, errors in specifying the pulse transfer function of the distorting 
medium, and spatial boundedness associated with the formation of the image frame.  

 
The effectiveness of airborne sounding of the Earth's 

surface is limited by scattering layers such as clouds, 
hazes, and fogs which distort the detected image in a 
specific way and thereby make the image processing, 
which is carried out with the purpose of monitoring the 
state of the natural medium and the objects of artificial 
origin, more difficult. In this connection as the sounding 
systems are developed and the classes of the sounded 
objects are extended, a need for studying and developing 
the methods, which are capable of restoring the images 
distorted by such formations, increases.  

This paper is devoted to studying the possibility of 
using the well–known methods, which have already 
become classic, for restoration of the images distorted by 
the scattering media. In so doing, considerable attention 
is devoted to the analysis of sources of the errors which 
arise in the process of restoration of the digitized images 
on a computer.  

Let us consider some details of the image formation at 
the output from the recording device with an account of the 
transfer of an incoherent optical signal through turbid media.  

The effect of such a medium on the process of image 
formation is analogous to that of the low–frequency 
spatial filter, whose output signal is described by the 
convolution integral equation  
 

ga(x, y) =⌡⌠
–∞

 ⌡⌠
∞

 f(ξ, η)h(x – ξ, y – η)dξdη = f(x, y)* ha(x, y) , 

 (1) 
 
where ha(x, y) is the pulse response function of the 

medium (the point spread function (PSF)), f(x, y) is the 
initial signal from the object, and ga(x, y) is the image 

formed at the detector input.  
The recording device in the process of forming the 

image can be regarded as one more low–frequency spatial 
filter with the pulse response function hn(x, y), which 

also reduces the dynamic range of the initial signal and 
contributes to the noise component n(x, y). The total 
pulse response function of the transmitting–recording 
channel is represented by a convolution of the pulse 
response functions of its components, i.e.,  

 
h(x, y) = ha(x, y) * hn(x, y) . (2) 
 

The recorded image signal can be now described in the 
following way:  

 

gd 
(x, y) = D[f(x, y) * h(x, y) + n(x, y)] , (3) 

 

where D is the operator of reduction of the dynamic range. 
In particular, its function can be carried out by a 
photodetector within the linear portion of the frequency 
response as well as by an analog–to–digital converter 
(ADC) with the fixed number of bits; for this reason, the 
action of the operator D is extended also to the noise 
n(x, y) introduced by the recording device. Any optical 
device bounds spatially the recorded image, i.e., forms a 
frame. As a rule, a rectangle is such a bounded area. In the 
case of digital images it is more convenient to use the square 
frames (or rasters), since the mathematical apparatus of 
discrete integral transformations is well adapted to them.  

Thus, the image at the output from the recording 
device can be represented in the form  
 

g(x, y) = D{R[f(x, y) * h(x, y)] + n(x, y)} , (4) 
 

where R is the operator of frame formation, which has no 
effect on the noise properties.  

Note that, when carrying out the restoration, the 
frame formation may be an extremely unfavorable factor, 
significantly affecting the restoration quality. Let us assume 
that the frame formation results in a truncation of the image 
f(x, y) outside of the intervals ⏐x⏐ > p and ⏐y⏐ > p so that 
f(x, y) = 0 outside of the given intervals. The image 
truncation is equivalent to its multiplication by the 
weighting function of the window 

 

ω(x, y) = {1 , ⎜x⎜ < p and ⎜y⎜ < p ,
0 , ⎜x⎜ ≥ p and ⎜y⎜ ≥ p . 

 

The spectrum of the image obtained after its truncation is 
equal to a convolution of the spectra of the image and the 
window, with the spectral function being a two–
dimensional sinc function. As a result, parasitic components 
at higher spatial frequencies, multiple of 2π/p, have arisen 
in the image spectrum (Gibbs' phenomenon).1 In connection 
with the fact that the problem of estimating the image  

f
∧
(x, y)) from integral equation (1) is ill–posed,4 the frame 

formation can lead to markedly amplified distortions.  
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If an aerosol–gaseous atmosphere is considered as a 
scattering medium, then its PSF is wide.2 In this 
connection, note that an analogous growth of the distortions 
may also give rise to the truncation of the PSF, which is 
used for the image restoration.  

Let a continuous image be digitized with the help of a 
grid of the Dirac delta–pulses spaced at the interval Δs. We 
shall assume that the discretization has been made with an 
interval that allows us to avoid the overlap of the 
periodically repeated image spectrum. In this case the action 
of the operator R determines the size of the N×N square 
raster at the nodes of which the readings of the distorted 
image are resided while the action of the operator D 
virtually reduces to rounding off these readings to the 
nearest integer on the scale determined by the number of 
bits of the ADC. As a result, the two–dimensional array of 
pixels is formed  
 

gij = ∑
k=1

N

 ∑
l=1

N

 fkl hi–k, j–l + nij . (5) 

 
In order to perform an image restoration based on the 

recorded pixels gij, we will employ the PSF's calculated 

according to the technique proposed by V.V. Belov et al. or 
measured in the laboratory experiments.3 In so doing, on 
the one hand, the realizations of the PSF will incorporate 
an error caused by inaccuracy of the calculational methods 
or the measurement errors; on the other hand, a need for the 
PSF truncation at some level can arise so that to fit the 
prescribed size of the raster N. For this reason, a series of 
numerical experiments was performed on estimating the 
effect of the following factors on the accuracy of the image 
restoration:  

–– inaccuracies in specifying the PSF;  
–– the quantization range and instrumental noise 

incorporating the quantization noise;  
–– the spatial boundedness associated with the 

formation of the frame.  
The investigations were carried out according to the 

following schemes:  
1. Based on the calculated and measured PSF's of the 

model cloudy media the processes of both the image 
distortion and restoration were computer simulated.  

2. The image was distorted in a laboratory experiment 
by means of modeling the conditions of observation through 
the local layer of the turbid medium and was restored with 
the help of the calculated and measured PSF's.  

In both cases the observation model was characterized 
by the PSF with circular symmetry, in addition, the optical 
transfer function (OTF), which is a Fourier transform of the 
PSF, was assumed to be a real function.  

In order to minimize the losses associated with the 
frame formation, the ratio of the size of the raster N and 
that of the object Nf was chosen from the condition 

N/Nf > 10. In numerical experiments a test object in the 

form of a uniform circle with the diameter Nf = 25 pixels 

aand 250 brightness levels was used. The test object was 
located at the center of the square raster with 256×256 
pixels against a zero background. The noise component was 
not computer simulated (an image with noise was recorded 
in the laboratory experiment).  

It should be noted that the chosen test object has a 
virtually infinite spectrum and, therefore, can serve as a 
good standard when estimating the performance of the 
restoration algorithms, in particular, their possibility of 
reconstructing the high spatial frequencies.  

The image in the numerical experiment was distorted 
by means of convolution of the test object and the 
calculated (by the Monte Carlo method2) or measured3 
PSF's in the frequency domain. If necessary, the PSF was 
interpolated with the required step by the spline 
approximation method and transformed at the 256×256 
grid. In order to eliminate the overlapping effect, the 
rasters of the object and of the PSF were additionally 
padded with zeroes to the 512×512 pixels prior to 
convolution. The frame (action of the operator R) was 
formed by truncating the result down to the 256×256 
pixels. Before recording on a disc, the image pixels were 
scaled to the required range predetermined by the number 
of bits of the ADC, and were rounded off to the nearest 
integer (action of the operator D). For example, for a  
5–bit grid the maximum signal amplitude was 30 while 
for an 8–bit grid it was 250 and for a 10–bit one it 
amounted to 1020.  

In order to obtain a consistent estimate of the results 
of the numerical and laboratory experiments, in the latter 
we used a diffuse self–glowing test object shaped as a disk 
6 mm in diameter, whose transformation comprised 25 
pixels per diameter in the computer memory. Here the 
spatial quantization step was 0.24 mm/pixel. The test 
object was recorded by a high–resolution TV camera with 
compensation for the nonuniformity of the photcathode 
sensitivity. The scattering medium was prepared by 
dissolving milk in a distilled water enclosed in a cell with a 
working diameter of 440 mm. The distance from the test 
object to the center of the disperse layer l was varied so 
that we could simulate three types of typical atmospheric 
optical situations, illustrated in Fig. 1. The figure shows 
three types of vertical profiles of the extinction coefficients 
β

ext
. Figure 1a corresponds to the case in which the 

underlying surface was covered with the optically dense 
scattering layer (e.g., fog), figure 1b refers to the case in 
which the layer was slightly above the surface, and 
figure 1c illustrates the case when the viewing line 
intersected cloudiness. Note that the PSF shape and its 
width are substantially different for the three cases under 
consideration. If for the first situation the PSF can be 
approximated by an exponential function, in the last case 
h(r) = δ(r) + const, where δ(r) is the delta function and 

r = x2 + y2.  
 

 
 

FIG. 1. The vertical profile of the extinction coefficient 
as a function of the position of the scattering. 

 
The optical thickness τ of the scattering layer was 

monitored with an individual measuring channel in the 
experiment. The distorted image was recorded through a 
layer with τ = 7.0. The reference image of the test object 
was recorded through a cell filled only with the distilled 
water.  
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In order to set the analog TV signal into the 
computer, a videoprocessor with a high–speed 8–bit ADC 
was employed. For the purpose of optimal utilization of 
the ADC bits, the intensity of the light flux from the test 
object was regulated by neutral light filters positioned in 
front of the light source; in so doing, the brightness of 
pixels of the recorded image was in the range 0–250. In 
order to reduce the noise component, 32 digitized frames 
were averaged. The image recorded in the byte format was 
located on the raster with 256×256 pixels.  

The distorted images were restored with the use of 
an inverse filter and Wiener's filter analogous to that 
used in Refs. 5 and 6, as well as with the use of 
Tikhonov's regularization technique.7 The transfer 
functions of the filters are given by the formulas in 
accordance with the above–indicated order.  

 

Hi(ωx, ωy) = 
1

H(ωx, ωy)
 ; (6) 

 

HW(ωx, ωy) = 
H*(ωx, ωy)

⎜H(ωx, ωy)⎜
2 + A

 ; (7) 

 

HT(ωx, ωy) = 
H*(ωx, ωy)

⎜H(ωx, ωy)⎜
2 + α(ωx

2 + ωy
2)

 , (8) 

 
where H(ωx, ωy) = F[h(x, y)] is the optical transfer 

function of the scattering layer, F is the symbol of the 
Fourier transform ⏐H(ωx, ωy)⏐

2 = H(ωx, ωy) H*(ωx, ωy), 

H*(ωx, ωy) is the complex conjugate to H(ωx, ωy). A is 

the parameter of Wiener's filter, α is the regularization 
parameter, ωx = ωm = mΔωx, Δωx = 2π/N; 

ωy = ωn = nΔωy, Δωy = 2π/N; m = 1, 2, ... ,N, and 

n = 1, 2, ... ,N.  
In order to estimate the image quality and 

completeness of the PSF, the criterion of normalized rms 
error was used:  
 

ε = 
⎜⎜ϕij – ϕ

∧
ij⎜⎜

⎜⎜ϕij⎜⎜
⋅100 , (9) 

 
where ϕij is the initial test object or the complete PSF and 

ϕ
∧

ij is the resulting distorted or restored test object, i.e., the 

truncated PSF.  
In order to numerically estimate the effect of the 

truncation of the PSF on the restoration accuracy, the 
distorted images were formed with the help of the PSF's 
calculated for the three typical positions of the scattering 
layer with τ = 3.75. In order to cover the energy 
maximum with the given raster with 256×256 pixels, the 
PSF was interpolated with larger step being equal to 
0.4 mm/pixel. The operators D and R were not involved. 
The obtained images were characterized by the normalized 
rms error of 85.4, 91.2, and 96.1% for the first, second, 
and third positions of the scattering layer, respectively.  

In the numerical experiment the PSF width was 
periodically decreased in the radius at 10 pixels per one 
iteration. The first iteration was an exception, since a 
radius was decreased by a single pixel.  

The calculated results are listed in Table I for the 
three positions of the scattering layer. The first column of 
the table gives the PSF (ε) used in the process of image 
restoration. The next two columns contain the normalized 
rms error of restoration with the use of the Wiener's 
filter when the parameter A was equal to 0.00001 and 
0.0001. The last two columns present the normalized rms 
error of restoration based on Tikhonov's regularization 
technique with the regularization parameter α = 1⋅10–8 
and 1⋅10–9.  
 

 
 

FIG. 2. Images of the test object. 
 

 
 

 
 

FIG. 3. The PSF profiles.  
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TABLE I. 
 

Normalized rms error of restoration (%) 
Wiener's filter Tikhonov's regularization 

 
Normalized 
rms error 
of PCF, % 

Inverse filter 
A=0.00001 A=0.0001 α=1.0E–8 α=1.0E–9 

1 2 3 4 5 6 

l = 22 mm 

0.01 0.0 3.6 17.9 19.9 8.0 
0.18 0.3 3.6 17.9 19.9 8.0 
0.44 0.8 3.8 18.1 19.9 8.1 
0.86 1.9 4.5 18.5 20.0 8.4 
1.66 4.5 6.6 19.7 20.6 9.6 
2.72 8.7 10.4 21.9 21.9 12.3 
3.89 13.5 15.0 24.9 24.3 16.3 
5.37 19.6 20.8 29.1 28.0 21.6 
7.52 27.4 28.3 34.9 33.7 28.9 
10.96 38.1 38.7 43.5 42.4 39.1 
16.03 51.8 52.2 55.1 54.5 52.4 
23.01 68.3 68.3 69.8 69.6 68.6 
30.06 80.7 80.8 81.3 81.7 80.8 

l = 89 mm 

0.16 17.0 14.0 37.9 26.2 10.9 
1.65 898.0 14.7 38.0 26.8 32 
3.51 934.4 17.0 38.5 28.8 36.8 
5.92 196.8 21.6 39.5 32.8 53.4 
9.53 90.8 27.2 42.1 35.8 54.7 
12.83 173.4 31.1 45.5 38.2 40.4 
15.54 228.0 37.5 49.9 42.6 43.1 
18.04 483.3 44.9 53.9 50.4 101.7 
20.40 355.4 49.6 58.2 52.8 59.7 
22.79 108.4 56.7 63.1 59.0 65.2 
25.61 117.0 63.7 68.6 65.8 75.7 
31.24 1141.0 98.3 72.4 132.4 404.2 
65.01 189.3 98.4 88.7 183.7 286.6 

l = 229 mm 

0.12 1.8 19.2 54.3 21.8 7.9 
1.15 305.4 24.6 54.1 91.9 239.6 
2.32 114.0 37.4 54.5 75.4 106.5 
3.73 621.1 49.7 55.4 129.9 405.2 
5.76 192.4 55.5 55.7 102.9 174.4 
7.73 8426.6 209.5 58.1 1123.7 5145.4 
9.54 1103.3 94.2 58.5 298.8 777.5 
11.55 146.8 49.1 62.8 83.2 132.9 
14.30 194.6 70.1 61.7 127.6 180.9 
18.88 171.0 98.5 66.7 146.1 167.9 
27.44 128.0 77.1 80.6 91.7 120.6 
44.64 117.4 91.5 86.4 96.9 113.1 
56.40 195.1 99.1 95.1 97.3 192.4 

 
It follows from the data of Table I that the main 

portion of the energy of the PSF for the case, which 
corresponds to Fig. 1a, is concentrated near the central 
pixel, since radial truncation of the PSF from 127 to 7 
pixels results in an increase of the normalized rms error 
from 0.01 to 30.1%. Truncation of the PSF in this case 
leads to a smooth growth of the restoration error for all 
of the filters used. In this case a substantial growth in the 
restoration error is observed when truncation of the PSF 
is sufficiently great, i.e., from 128 to 57 pixels or when 
the normalized rms error is greater than 3%.  

A wider PSF with a complicated shape of the wings is 
typical of the second case (Fig. 1b); as a result, even a  

small radial truncation, e.g., down to 117 pixels with an 
error of 1.65% makes it impossible to use the inverse filter. 
Although the capacity for work of the filters with the 
regularizing additions is preserved, the reconstruction 
quality turns out to be low here.  

In order to compensate for the distortions, which arise 
in the case corresponding to Fig. 1c, the use of the inverse 
filtration is apparently inadvisable, since even in the case in 
which the PSF is truncated insignificantly a substantial 
increase in the restoration error is observed. As follows from 
the PSF shape and the nature of the distortions, here one 
can preferably refer to a need for a gradation correction 
rather than frequency one.  
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FIG. 4. The image profiles.  
 

Thus, we can conclude that in the process of 
restoration of the images distorted by the scattering layers 
with the wide PSF's, a quite high sensitivity of the 
resulting accuracy to the errors in specifying the PSF wings 
is observed. The use of the regularization filters makes it 
possible to obtain the approximate solution, whose error 
depends on the accuracy of the initial PSF and on the 
position of the scattering layer on the viewing line. Better 
results can be obtained for geometric optics situations in 
which the scattering layer is localizd in the first position, 
i.e., when the PSF is a smooth sufficiently steep decaying 
function. It is this situation in which we performed the 
further experiments (Fig. 1a).  

The effect of the quantization range and noise  
(the operator D) as well as of the spatial boundedness  
(the operator R) associated with the frame formation on the 
restoration quality has been investigated. In the numerical 
experiment we used the calculated PSF for a cloudy 
medium with τ = 3.75 as well as the PSF obtained in the 
laboratory experiment for the model cloudy medium with 
τ = 7.00. The spatial quantization step size in both cases 
was 0.24 mm/pixel.  

 
TABLE II.  

 

 Normalized rms error of restoration  

τ = 3.75 τ = 7.0 

The 
number of 

bits of 
the ADC 

D R DR D R DR 

5 34.9 23.1 34.9 72.1 61.1 72.1 
6 29.2 23.1 29.2 64.3 61.1 64.3 
8 24.0 23.1 24.0 61.2 61.1 61.2 
10 23.3 23.1 23.3 61.2 61.1 61.2 

 

The results of numerical experiment with Wiener's 
filter (the parameter A = 0.00015) are presented in Table II. 
In order to obtain the consistent estimates, the normalized 
rms errors were calculated after scaling the restored image 
on the range of the 8–bit ADC and recording them in the 
byte format on a magnetic disk. The distorted images were 
characterized by the normalized rms errors of 65.7 and 
150.6% for τ = 3.75 and 7.0, respectively.  

It follows from our results that  
a) even in the case in which the PSF is exactly known 

and external noise sources are absent an uncertainty has 
arisen due to the finite representation of the number at the 
output from the ADC (the quantization noise) that leads to 
a significant error in the solution,  

b) extension of the digital grid of the ADC weakly 
affects the restored image,  

c) the frame formation gives rise to the growth of the 
restoration error also when the object has small size, for 
which the amplitude of the signal carried out of the frame 
by the PSF wings constitutes a small value, which lies 
below the sensitivity threshold of the ADC.  

 

 
 

 
 

FIG. 5. The profiles of the image restored based on 
Tikhonov's regularization method.  

 
Let us consider the resulting restored images, which have 

been obtained in the laboratory experiment. Figure 2 shows 
the images of the object (a) and its distortion (b), which is 
characterized by a large value of the normalized rms error 
equal to 159.7%. The profiles of the calculated (for a medium 
with τ = 7.6) PSF and the measured one (for a medium with 
τ = 7.0), respectively, are shown in Figs. 3a and b. Figure 4 
shows the profiles of the model object (curve 1), of the image 
distorted in the laboratory experiment (curve 2), and of the 
results of distortion of the model object with the help of the 
measured PSF (curve 3) and the calculated one (curve 4). As 
one can see, the measured PSF adequately reflects the process 
of distortion formation, the error within the limits of the 
256×256 raster does not exceed 15%. At the same time, the 
calculated PSF incorporates a rather large error and, as a 
consequence, the normalized rms error of the model distorted 
image in comparison with the recorded image amounts to 
63.5% (on the 256×256 raster). It looks as though with the 
help of the measured PSF we can obtain a higher quality 
restoration; however, this does not take place, because there is 
a need for smoothing (in order to control the noise,  
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the truncation of the image frames and of the PSF) by means 
of regularization of the restoration algorithm. As a result, the 
use of the calculated and measured PSF's yields an identical 
results in practice.  

Figure 2c shows the resulting restoration of the distorted 
image, which was recorded in the laboratory experiment 
(Fig. 2b). The reconstruction based on Tikhonov's 
regularization method with the measured PSF was employed. 
The choice of the optimal value of the regularization 
parameter α

opt
 was made by way of calculating the set of 

regularized solutions f
∧

ij 

αk, for which the normalized rms error 

was calculated in accordance with Eq. (9). A value of αk, for 

which εk(f
∧

ij 

αk) reaches the minimum, was chosen as optimal. 

As a result, it was found that α
opt

 = 1.0⋅10–7. Using it we 

have obtained a smoothed solution with the normalized rms 
error ε

opt
 = 43.6%. The profile of this image is shown in 

Fig. 5a, while the profile of the image obtained by means of 
the same filter but with the calculated PSF, is shown in 
Fig. 5b. As one can see, they differ only in the region of 
overshoots, for which Gibb's phenomena are responsible. 
When α = 0.1α

opt
 significant increase of noise is observed, 

while at α = 10α
opt

 still stronger smoothing occurs. The value 

of the normalized rms error for the first case is 48.8% and for 
the second case it is 58.4%.  

Thus, the distortions of the images recorded under 
the conditions of atmospheric–optics situation of the first 
type (when the scattering layer with a moderate optical 
density is located near the object) is characterized by the 
large normalized rms error. In this case, the use of  
the linear filters makes it impossible to compensate  
for the losses of the high spatial frequencies. In  
the considered situation we have succeeded but  
in restoration of the average diameter of the object 
measured at half–maximum of the amplitude.  
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