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The problem of an intracavity lasing of the laser with an external reflector 
under conditions of spatial mismatch between the incident and reflected waves is 
discussed. A system of equations is derived for the coefficients of series expansion of 
the light field in the eigenfunctions of an empty resonator in the case of a spatially 
homogeneous active medium. The derivation was made within the framework of 
semiclassical theory of quantum generators. A comparison of techniques for recording 
the optical fields using heterodyne detection and coherent laser detection. It is shown 
that these techniques differ only by the shapes of the transmission functions of the 
detectors, which in the latter case is described by the eigenfunctions of the empty 
resonator.  

 
INTRODUCTION  

 
The detection of very weak signals by means of 

including the atmosphere in the channel of the feedback 
optical loop of a laser is one of the most effective 
methods of signal detection in the IR together with the 
heterodyne detection. In the last few years there have 
appeared works1–3 on theoretical and experimental studies 
of the possibilities of the method based on the laser 
detection indicating that the problem is of definite 
interest. In my opinion, to put this method into practice 
it is necessary to solve the problem on response of a laser 
detector to the optical radiation with both random and 
deterministic spatial structure. The problem may be 
formulated as the determination of the spatial structure of the 
intracavity light field of a laser with an external reflector, 
which accounts for the spatial mismatch between the incident 
and reflected waves in laser detecting. The solution of this 
problem enables us to expand the range of the problems which 
may be studied by the methods based on the coherent 
recording of the optical field.4,5 

In this paper the spatial structure of the intracavity 
light field of the laser with an external reflector is 
assumed to be described by the series expansion of the 
light field in terms of the eigenfunctions of the empty 
resonator. In principle, any obiect, for example, a mirror, 
a topographic object, a ground or sea surface, particles in 
the atmosphere, and so on, may serve as an external 
reflector. The coefficients of series expansion of the light 
field in terms of the eigenfunctions of empty resonator 
satisfy the system of equations, derived for the case of a 
spatially homogeneous active medium in the framework of 
a semiclassical theory of quantum generators. The formula 
describing the intracavity field structure of a laser may be 
used for calculation of the experimentally measured 
quantities. The results of calculation of coherent 
component of the total energy flux in laser detecting of  

the radiation reflected from the surface which is placed in 
the medium with large–scaled random inhomogeneities 
and some consequences from the obtained relation are 
presented.  

 
THE SYSTEM OF EQUATIONS DESCRIBING THE 

INTRACAVITY GENERATION OF LASER WITH AN 

EXTERNAL REFLECTOR UNDER CONDITIONS OF 

SPATIAL MISMATCH BETWEEN THE INCIDENT AND 

REFLECTED WAVES  
 

The laser with an external reflector is shown in 
Fig. 1. We assume that the time dependence of the field 
components is described by the harmonical oscillation 
with the slowly–varying amplitude  

 

E(ρ, z; t) = u(ρ, z; t)e–iωt , 
 
where ρ = {x, y} and x, y, and z are spatial coordinates. 
Here the z axis coincides with the optical axis of the 
laser. We represent the complex amplitudes of the light 
field inside and outside of laser cavity in the form of 
counter propagated waves  
 
u

I 
(ρ, z; t) = u+(ρ, z; t) + u–(ρ, z; t) , 

 

u
II 

(r, z; t) = u
+
r (r, z; t) + u

–
i (r, z; t) , 

 
where u+(ρ, z; t) and u–(ρ, z; t) are the intracavity light 
fields of the optical waves propogating along the z axis in 
positive and negative directions, respectively, u

r
+(ρ, z; t) 

is the light field of the optical wave reflected from the 
external object, and u

i
–(ρ, z; t) is the light field of the 

incident wave. The directions of wave propagation are 
indicated with arrows in Fig. 1.  
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FIG. 1. 
 

The shortened equation describing the intracavity 
generation of the laser for the slowly–varying amplitude 
has the form  

 

{ }∂
∂t – 

1
2 (σ+

(N) – σ
–
) + 

1
2iω (ω2 + c2Δ)  u

I 
(ρ, z; t) = 0 , (1) 

 
where σ

–
 are the linear losses in active medium, σ

+
(N) is an 

amplification coefficient of the active medium, which 
depends on the relative population inversion of the working 
transition N, Δ is the Laplacian operator.7  

The boundary conditions at the surfaces of the laser 
mirrors may be written in the form:  

 

u~—
i
(r, 0; t) = t

1
u~–(r, 0; t) ; (2) 

 

u~+(r, 0; t) = r
1
u~–(r, 0; t) + u~+

r
(r, 0; t) , (3) 

 

u~–(r, l; t) = r
2
u~+(r, l; t) , (4) 

 
where τ

1
 is the transmittance of the left mirror, r

1
 and r

2
 

are the reflectances of the left and right mirrors, and l is the 
cavity length. The tilde (~) in formulas (2), (3) and (4) 
implies that the values of the slowly–varying amplitudes 
correspond to that at the surfaces of the laser mirrors. 
Boundary condition (2) accounts only for the first–order 
interference of light reflected from the atmospheric object 
and from the left mirror.6  

We set the relation between the complex amplitudes of 

the incident and reflected waves by means of the operator T̂
, which describes reflection and scattering of the optical 
wave by the atmospheric object  

 

u
∼+

r
(ρ, 0; t) = τ

1
T
∧

u
∼—

i
(ρ, 0; t) . (5) 

 

Relation (5) is applicable to some problems in 
atmospheric optics. For example, calculational methods for 
optical waves reflected from the rough surfaces of different 
types (sea waves, relief of dry land, paper surface, mat 
glasses, and so on) have been discussed in Ref. 7, the results 
of investigation of reflection of the optical waves from the 
specular and diffusely–reflecting surfaces and from the PC 
mirror placed in the large–scaled randomly inhomogeneous 
medium have been presented in Refs. 8, 9, and 10; the 
theory of scattering of optical waves by discrete scatterers 
has been presented in Refs. 7, 11, and 12. Since the 
scattering of optical radiation by the external atmospheric 
object is rather complex phenomenon, the field distribution 

of incident u~
i
–(ρ, 0; t) and reflected u~

r
+(ρ, 0; t) waves are 

different and therefore are spatially mismatched.  

It is expedient to solve equation (1) simultaneously 
with Eq. (5) with boundary conditions (2), (3) and (4) with 
the use of series expansion of light field in terms of the 
eigenfunctions of the empty resonator with ideally 
conducting walls.13,14 The equation which defines the 
eigenfunctions of empty resonator has the form  

 

{Δ + k
2
mk} umk

(ρ, z) = 0 , (6) 
 

where k
mk

 = ω
mk

/c and ω
mk

 = ω ′ 
mk

 + ω′′ 
mk

 is the complex 

natural frequency of an empty resonator. The subscripts m 
and k denote the number of half–wave oscillations along 
the x axis and y axis. The subscript corresponding to the 
number of half–wave oscillations along the z axis is 
assumed to be fixed and therefore is omitted in notation of 
ω

mk
 and u

mk
(ρ, z). We also represent the solution of 

equation (6) in the form of a sum of counter propagated 
waves.  
 

u
mk

(ρ, z) = u
+
mk(ρ, z)e

ik
mk

z
 – u

–
mk(ρ, z)e

–ik
mk

z
 , 

 

where u± 
mk

(ρ, z) are the slowly–varying amplitudes which, 

as is well known, satisfy the parabolic equation13,14  
 

{ }± 2ik
mk

∂
∂z + Δ⊥ u

±
mk(ρ, z) = 0 , (7) 

 

where Δ⊥ is the two-dimensional Laplacian operator.7  

We write the series expansion of the intracavity light 
field of optical waves in terms of the eigenfunctions of the 
empty resonator in the form  

 

u±(ρ, z; t) = ∑
m, k

 

e
±ik

mk
z
β
±
mk(t, z) u

±
mk(ρ, z) , (8) 

 

where β± 
mk

(t, z) are the coefficients of the expansion. Based 

on the method of reducing the boundary–value problem to 
the problem of a resonator with distributed losses,15 we 
derive the system of ordinary nonlinear differential equation 
for the coefficients of the series expansion. Direct 
substitution of relation (8) into Eq. (1), with boundary 
conditions (3) and (4) leads to the boundary–value problem 

to be solved for β± 
mk

(t, z) and representing a system of 

nonlinear partial differential equations with the conditions 
at z = 0 and z = l  

 

β
+
mk(t, 0) = r

1
β

–
mk(t, 0) + s

+
mk(t, 0) , (9) 

 

β
–
mk(t, l) = r

2
β

+
mk(t, l) , (10)  

where  
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s
+
mk(τ, 0) = ⌡⌠u

∼ +
mk

(ρ, 0) u
∼+

r
(ρ, 0; t) dρ . (11) 

 
Boundary conditions (9) and (10) follow from 

orthogonality of the eigenfunctions of the empty resonator. 
We use relations (9) and (10) for determining the derivative 

∂β± 
mk

(t, z)/dz. We approximate β± 
mk

(t, z) with the help of 

the smooth function of the variable z assuming that the 
mirror transmittance and the coupling constant between the 
laser and the external reflector are small values. The 
expansion in a power series of z/l has the form  

 

β
±
mk(t, z) = ±β

mk
(t) + β

(1)
mk(t) + 

z
l β

(2)
mk(t) + ... , (12) 

 
where β

mk
(t) is the main term of the expansion and β(1)

mk
(t) 

and β(2)
mk

(t) are the corrections in the first approximation in 

terms of the small parameters, i.e., in the mirror 
transmittance and the coupling constants between the laser 
and the external reflector. It is obvious from Eq. (12) that 
the derivative  
 

∂β
±
mk(t, z)

∂z  ≅ 
1
l β

(2)
mk(t) . 

 
After substituting expansion (12) into boundary 

conditions (9) and (10) followed by combining the terms of 
the same order, we obtain the following expression for the 
derivative:  

 

∂β
±
mk(t, z)

∂z  = 
1
l (1 + r)β

mk
(t) – 

1
2l smk

(t) , (13) 

 
where  
 

r = 
r
1
 + r

2

2  , s
mk

(t) = s
+
mk(t, 0) .  

Differentiating the eigenfunctions of the empty resonator 
with respect to the spatial coordinates defined by Eqs. (6), 
(7), and (13) enables one to transfer from solving Eqs. (1) –
 (5) to solving the system of ordinary nonlinear differential 

equations for the expansion coefficiens β± 
mk

(t, z) ≅ ±β
mk

(t). 

The system for β
mk

(t) has the simplest form for the model of 

the medium in which the amplification coefficient is 
independent of the spatial coordinates. This model is basic 
in the theory of single–mode generation of lasers.14 In this 
case we have the following system of the ordinary nonlinear 
differential equations:  

 
∂β

mk
(t)

∂t  = 
1
2{ }σ

+
(N) – σ

mk

–  + 2iΔω′
mk

 * 

 

* β
mk

(t) + 
c
2l smk

(t) , (14) 

 

where σ
–
mk = σ

–
 + 

2l
c  (1 + r) + 2ω′′ 

mk
 are the total losses and 

Δω ′
 

mk
 = ω – ω ′

 
mk

.  

The system of equations (14) enables one to study the 
dynamics of coefficients in the expansion of the intracavity 
light field of the laser with the external reflectors of 
different types (specular, diffuse or alternative surface, the  

system of scattering particles, and so on) and the 
properties of the medium on the path located between the 
laser and the external reflector. The modes of the empty 
resonator are taken as base functions, therefore it is 

expedient to take the spatial matching of the fields u~+
r

(ρ, 0; t) and u~+  
mk

(ρ, 0) into account. It is obvious from 

formula (11) that the value s
mk

(t) is the coefficient of the 

expansion of the field of the incident wave u~+
r
(ρ, 0; t) in 

the eigenfunctions of the empty resonator u~+  
mk

(ρ, 0). Thus 

the value s
mk

(t) describes the spatial matching between 

the field of the incident wave u~+
r
(ρ, 0; t) and the mode of 

the empty resonator u~+  
mk

(ρ, 0). In general, the field  

u~+
r
(ρ, 0; t) has the arbitrary spatial structure. Therefore 

the only part of the field influencing the dynamics of the 
coefficients β

mk
(t) is that which spatially matches with 

the mode of the resonator u~+  
mk

(ρ, 0).  

We consider the situation when the optical wave is 
reflected by the surface placed in the large–scale 
randomly–inhomogeneous nonabsorbing medium. It follows 
from Ref. 8 that the relation between the complex 
amplitudes of the incident wave and the reflected one may 
be written in the form  

 

u~+
r
(ρ, 0; t) = –τ

2
1∑

m k

 

β
mk⎝
⎛

⎠
⎞t – 2 

⏐z
0
⏐

c  × 

 

× e2ik⎜z
0
⎜u~+

r
(ρ, 0) , (15) 

 

u~ +  
r,mk

(ρ, 0) = 
⌡
⌠

 

 

exp
⎝
⎛

⎠
⎞ik

1

2R
1
 ρ2 G(ρ, ρ

1
; ⏐z

0
⏐)K

0
(ρ

1
) × 

 

× G(ρ
1
, ρ

2
; ⏐z

0
⏐)exp

⎝
⎛

⎠
⎞ik

1

2R
1
ρ2

2
u~ + 

mk
(ρ

2
, 0) dρ

1
dρ

2
 , 

 
where z

0
 is the coordinate of the center of the reflecting 

surface, R
1
 is the curvature radius of the left mirror, 

k
1
 = kn

1
, n

1
 is the refractive index of the substrate of the 

left mirror, K(ρ) is the reflectance of the surface, 
G(ρ, ρ

1
, z) is the Green's function for the large-scale 

randomly–inhomogeneous medium,7–10 and 2k⏐z
0
⏐ is the 

regular phase run–on for the plane wave.  
After substituting Eq. (15) into Eq. (14) and 

transforming it we obtain the system of stochastic nonlinear 
differential equations with the time delay of the argument 
which describes the generation of the laser with the external 
reflecting plane placed in the randomly–inhomogeneous 
nonabsorbing medium  

 
∂β

mk
(t)

∂t  = 
1
2 { }σ

+
(N) – σ

mk

–  + 2iΔω′
mk

 β
mk

(t) + 

 

+ 
c
2l e

2ik⎜z
0
⎜∑

m′k′

 

γ m′k′
mk

β
m′k′⎝

⎛
⎠
⎞t – 2 

⏐z
0
⏐

c  , (16) 

where  
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γm′k′
mk

 = –τ
2
1⌡⌠u~+*

mk
(ρ, 0) u~ +   

r, m′k′(ρ, 0) dρ 

 
are the coupling constants between the laser and its external 
reflector for different modes representing the random 
complex values.  

It follows from Eq. (15) that the field u~+
r
(ρ, 0; t) is 

the superposition of the waves u~ +    
r, m′k′(ρ, 0) reflected from 

the surface and, in addition, the initial distribution of the 
incident wave field is specified in terms of the 
eigenfunctions of the empty resonator. The values γ

mk  
m'k' are 

all proportional to the coefficients of the expansion of the 

field of optical wave u~ +    
r, m′k′(ρ, 0) in the eigenfunctions of 

the empty resonator u~+  
mk

(ρ, 0). Thus, the coupling constants 

between the laser and external reflector γ
mk  
m'k' describe the 

spatial matching between the field of the reflected waves  

u~ +    
r, m′k′(ρ, 0) and the empty resonator mode u~+  

mk
(ρ, 0).  

The spatial mismatching between the fields u~ +    
r, m′k′(ρ, 0) and 

u~+  
mk

(ρ, 0) takes place due to such phenomena as diffraction 

of the optical wave from the laser aperture and the 
reflecting surface and scattering of the optical wave from 
the large–scale inhomogeneities of the medium and from the 
rough surface.  

We will consider the regime of a single transverse 
mode generation in the cases of the complete spatial 

matching and spatial mismatching between the fields u~ +    
r, m′k′

(ρ, 0) and u~+  
mk

(ρ, 0). In the former case it follows from the 

Eq. (15) that  
 

u~ +  
r, m′k′(ρ, 0) = –K

0 
u~ +  

m′k′(ρ, 0) , 

 
where K(ρ) = –K

0
 is the reflectance of an ideal mirror. The 

coupling constants between the laser and external reflector 
for different modes are the real values and equal to  
 

γm′k′
mk

 = τ
2
1K0

δ
mm′δkk′ . 

 
Thus, the system of equations (16) takes the form  
 

∂β
mk

(t)

∂t  = 
1
2 { }σ

+
(N) – σ

mk

–  + 2iΔω′
mk

 × 

× β
mk

(t) + 
c
2l τ

2
1 K0 

e
2ik⎜z0⎜β

mk⎝
⎛

⎠
⎞t – 2 

⎜z
0
⎜

c  . (17) 

 
The steady–state solution of Eq. (17) is not trivial 

only for the single mode, for which the conditions are 
satisfied  

 

σ
+
(N) – σm k

– –

– 
 = – 

2
l τ

2
1 K0 

cos 2k⎜z
0
⎜ ; (18) 

 

Δω
′
m
–

k
– = – 

2
l τ

2
1 K0 

sin 2k ⎜z
0
⎜ , 

 

where m– and k– are the subscripts corresponding to the 
high–quality transverse mode. The fact that only the single 
mode is excited under conditions of complete spatial 

matching between the fields u~ +    
r, m′k′(ρ, 0) and u~ + 

mk
(ρ, 0) in  

the case of the steady–state generation of the laser is 
because of the independency of σ

+
(N) on spatial 

coordinates. We note that Eq. (17) for high–quality 
transverse mode after transformation  
 

β
m
–

k
–(t) = β

–

m
–

k
–(t) exp(iΔω

′
m
–

k
–t)  

 
means different choice of the carrier frequency of the field 
coincide with the equation for the model6 without 
absorption, which is well studied now.  

Now we consider the regime of the single–mode 

generation in the case of spatially mismatched fields u~ +    
r, m′k′

(ρ, 0) and u~+  
mk

(ρ, 0). The intensity of the field of high–

quality transverse mode is by several orders of magnitude 
greater than that of the rest of low–quality modes, 
therefore we may assume that relative population inversion 
is determined by the value ⏐β– –

mk
⏐2, while the main 

contribution in the sum  
 

∑
m′, k′

 

γm′k′
mk

β
m′k′⎝

⎛
⎠
⎞t – 2

⏐z
0
⏐

c  

 

comes from the term γmk
– –

mk
β– –

mk
(t – 2 

⏐z
0
⏐

c ). For such a 

regime of generation we have the following system of 
equations:  
 
∂β

mk
(t)

∂t  = 
1
2 { }σ

+
(N) – σ

mk

–  + 2iΔω′
mk

β
mk

(t) + 

 

+ 
c
2l e

2ik⎜z
0
⎜γm

–
k
–

mk
β
m
–

k
–⎝
⎛

⎠
⎞t – 2 

⏐z
0
⏐

c  . (19) 

 
It is obvious from intercomparison of Eqs. (17) and 

(19) that for m = m– and k = k
–

 they differ only by a factor 

of magnitude at β– –
mk
(t – 2 

⏐z
0
⏐

c ). Therefore, from the 

physical viewpoint the high–quality mode generation under 
conditions of the spatial mismatching is equivalent to the 
generation of the same mode under conditions of entire 

spatial matching between the fields u~ +    
r, m′k′(ρ, 0) and u~+  

mk

(ρ, 0) but with another reflectance and equivalent phase 

run–on which is equal to 2k⏐z
0
⏐ + arg γmk

– –

mk
 . When m ≠ m– 

and k ≠ k
–

 the term with time delay of the argument in 
Eq. (19) describes the external source. For stationary 
generation the external source results in the underthreshold 
excitation of low–quality modes, while for complete 

matching between the fields u~ +    
r, m′k′(ρ, 0) and u~+  

mk
(ρ, 0) it 

does not occur. Thus, the spatial mismatching between the 

fields u~ +    
r, m′k′(ρ, 0) and u~+  

mk
(ρ, 0) is the main reason for 

underthreshold excitation of low–quality modes under 
conditions of the stationary laser generation.  

 
THE HETERODYNE LASER DETECTION OF THE 

OPTICAL FIELDS  
 
The system of equations (16) may be investigated by 

both numerical methods and the methods of the theory of  
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stochastic differential equations.7,16 In this paper we will 
investigate only the system of equations (16) with the help 
of the perturbation theory applicable to the problem of the 
heterodyne laser detection of the optical fields. The values 

γ
mk  
m′k′ are the small parameter of the problem. We set  

 
β
mk

(t) = β
mk, 0

(t) + β
mk, 1

(t) + ... , (20) 

 
ω = ω

0
 + ω

1
 + ... , (21) 

 
where β

mk,0
(t) and ω

0
 are the terms of zeroth order in the 

expansion of β
mk

(t) and ω in small parameters γ
mk  
m′k′; β

mk,1
(t) 

and ω
1
 are the terms of the first order of the perturbation 

theory.  
The value of the total flux of energy  
 

p± = ⌡⌠⎜u±(ρ, z; t)⎜2dρ (22) 

 

is of interest from the physical viewpoint under conditions 
of heterodyne detection. The coherent component of the 
total flux of energy is its information–bearing part and in 
the first order of the perturbation theory in the case of 
quasistationary generation is expressed in the following 
form:  
 

p±
c
 = β*

m
–

k
–

,0
 β

m
–

k
–,1 + β

m
–

k
–,0 

β*
m
–

k
–

,1
 . (23) 

 

It is convenient to introduce the complex coherent 
components of the total flux of energy for the theoretical 
considerations in the form  

 

p
∧±

c
 = β*

m
–

k
–

,0
 β

mk,1
 . 

 

Applying the standard methods of the perturbation 
theory to Eq. (16) we obtain that for the amplification 
coefficient of the active medium, which depends solely on 
⏐β

mk
⏐2 , the expression for the complex coherent component 

of the total energy flux takes the form  
 

p
∧±

c
 = 

c
2l 

τ
1 
e2ik

0
⎜z

0
⎜

∂σ
+
(N

0
)/∂⎜β

mk,0
⎜2

 * 

 

* ⌡⌠u~ + *
– –
mk

(ρ, 0)u~+
r , mk

– –(ρ, 0) dρ , (24) 

 
where N

0
 is the relative population inversion of an isolated 

laser and k
0
 = ω

0
/c.  

We will compare the heterodyne laser detection with 
standard heterodyne detection of optical fields with 
deterministic or randomly spatial field distribution. It is 
obvious from formula (24) that the two methods differ in 
the shape of the transmission function of the detector. In 
the case of traditional heterodyne detection the transmission 
function is determined by the characteristics of the input 
aperture and by the field of the reference wave.4,5 The 
eigenfunctions of the empty resonator represent the 
transmission function in the heterodyne laser detection. The 
shape of the eigenfunctions of the empty resonator is 
determined by the parameters of the resonator and by the 

values of the subscripts of high–quality mode m– and k
–

. 
Thus, one can significantly change the properties of the 
laser detector by varying the parameters of the resonator  

and the values of the subscripts of the high–quality mode. 
For example, the eigenfunctions of the empty steady 
resonator with infinite mirrors have the form13,14  

 

u~+
–
mk

–(r, 0) = u~+
–
m
(x) u~+

–
k
(y)  

 

u~+
m
(t) = 

1

a2mm! π
 H

m
(t/a) e–t

2
/2a

2
 , (25) 

 
where H

m
(t/a) are the Hermite polynomials, a is the 

distribution parameter which is expressed in terms of the 
beam matrix elements as follows:  

 

a4 = 
1

k2
–
mk

–( ) – 
AB
CD  . (26) 

 
The beam matrix elements have the form  

 

A = 1 – 
l

R
1
 , B = l , 

 

C = – 
1
R

1
 – 

1
R

2
 + 

l
R

1
R

2
 , and D = 1 – 

l
R

1
 , (27) 

 
where R

2
 is the curvature radius of the right mirror. It 

follows from Eq. (25), (26) and (27) that the properties of 
the laser detector with the steady resonator and infinite 

end–mirrors for the fixed values of subscripts m– and k– are 
determined only by the geometric dimensions of the 
resonator, by the curvature radii of the right and left 
mirrors R

1
 and R

2
, and by the length of the resonator l.  

For the set of subscripts of the lowest order m– = k
–

 = 0 
the transmission function of the detector obeys the Gaussian 
distribution. The radiation pattern of such a detector has 
one lobe, the maximum of which is oriented along the 
optical axis of the resonator. We will estimate the value of 
the field–of–view angle of the detector. To this end, we 

represent the field u~ +  
r,00

(ρ, 0) in the form of the plane wave 

with unit amplitude which is incident on the laser detector 

at an angle α. Then the field u~ +  
r,00

(ρ, 0) at the surface of the 

left mirror may be written in the form  
 

u~+
r ,00

(ρ, 0) = exp 
⎩
⎨
⎧

⎭
⎬
⎫ik

1

2R
1
 ρ2 + ikαqρ  , (28) 

 
where q is the unit vector. We will define the field–of–
view angle as the value of the angle α

0
, at which the square 

modulus of complex coherence of the component of the total 
energy flux in the case of detection of the optical radiation 
in the form of Eq. (28) decays by a factor of e–1 with 
respect to its maximum. Depending on the curvature radius, 
two regimes of operation of the laser heterodyne detection 
are identified first. One corresponds to the case of laser 
detector with a flat left mirror as R

1
 → ∞. The field–of–

view angle of such a laser detector is determined by its 
diffraction resolution  

 

α
0
 = 1/ka . (29) 

 

In the second regime of laser detection in the case of 
finite curvature radius of the left mirror R

1
 the field–of–

view angle equals to  
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α
0
 = 

a
R

1
 n

1
 . (30) 

 
The result may be interpreted as follows. The field 

u~ +  
r,00

(ρ, 0) may be generally represented in the form of 

expansion in the plane waves incident on the laser 
detector at different angles. It is wellknown5 that the 
superposition of the plane waves coming from the solid 
angle, which is determined by the diffraction resolution 
of the detector, is named a single spatial mode. It follows 
from Eq. (24) that in the first regime of operation the 
heterodyne laser detector records one spatial mode of 
incident field. Such a detection regime is the single–
mode. In the second regime of operation, as it is obvious 
from formula (30), the detector records the radiation 
contained in several spatial modes of incident field. Such 
an operation should be named the multi–mode. We note 
that both single–mode and multi–mode regimes of 
operation in laser detecting have their own analog in 
traditional heterodyne detecting.5  

Thus, the response of the laser detector to the weak 
optical radiation reflected by the surface, which is placed 
in the large–scale randomly inhomogeneous medium, is 
described by formula (24), while the response to the 
signal with arbitrary amplitude is described by 
system (16). To describe the response of a laser detector 
to the optical radiation scattered by an atmospheric 
object, it is necessary to start from system (14).  
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