
570   Atm. Opt.  /August  1991/  Vol. 4,  No. 8 V.A. Babenko 
 

0235-6880/91/08  570-04  $02.00  © 1991 Institute of Atmospheric Optics 
 

ASYMMETRY OF RADIATION ABSORPTION BY A HOMOGENEOUS SPHERE  

 

V.A. Babenko  
 

Institute of Physics, 
Academy of Sciences of the Belorussian SSR, Minsk  

Received April 11, 1991  
 

Analytical relations for the radiation power absorbed by the shadowed and 
illuminated hemispheres and for the asymmetry coefficient of absorption are derived 
within the framework of the Mie theory describing the scattering of a plane 
electromagnetic wave by a homogeneous sphere. The stable algorithm for calculating 
these quantities is constructed.  

 
Absorption of electromagnetic radiation by aerosol is the 

classical problem in optics of disperse media. The Mie1 theory 
is used to calculate the absorption coefficient in the simplest 
case of the spherical scatters. Here the particle is usually 
considered as a one entity and is described by the absorption 
cross section σ

ab
. An alternative approach is the detailed 

description of the internal electromagnetic field distribution 
inside a sphere.2 The first approach gives too little information 
about the absorption while the latter requires much 
computation time and often provides an information which is 
redundant and difficult for interpretation. In this connection 
an introduction of rather simple additional characteristics of 
absorption is of interest. For example, Refs. 3–5 are devoted 
to the calculation of σ

ab
 of the separate spherical sublayers 

inside the multilayered sphere. From our point of view, a 
convenient and information–bearing characteristic of this kind 
is the ratio η of the power W

s
 absorbed in the forward 

(shadowed) hemisphere to the corresponding value W
l
 for the 

backward (illuminated) hemisphere η = W
s
/W

l
. The 

calculation of W
sl
 by direct numerical integration of the 

function of the sources over the corresponding domains, 
especially for large particles, is hindered by complicated 
interference structure of the internal field. Therefore, more 
preferable way is to find analytical relations for the 
asymmetry parameter of the absorption η. This paper presents 
the solution of this problem.  

Let us specify the geometry of the problem. A plane 

monochromatic (e–iωt) linearly polarized electromagnetic wave 
with the amplitude E

0
 (the vector E oscillates along the x 

axis) is incident in the positive direction of the z axis on a 
spherical homogeneous particle of radius R with the complex 
refractive index m = N + iκ (the particle center coincides with 
the origin of the Cartesian coordinate system (x, y, z) and of 
the spherical coordinate system (r, θ, ϕ). Since the notations 
here will completely follow those used earlier in Ref. 1, first 
of all let us expand the internal electric field E and the 
magnetic field H in a system of vector spherical functions 
M

σ1n
(1)  and N

σ1n
(1)  (σ = e, 0 are the even and odd components) 

whose definition and properties can be found in Ref. 1: 
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Here γ
n
 = i n/n(n + 1), k

0
 = 2π/λ is the wave number in 

the surrounding space, ε
0
 and μ

0
 are the electric and 

magnetic constants, r is the radius vector of the point inside 
the particle, c

n
 and d

n
 are the amplitude coefficients of the 

internal field (in contrast to Ref. 1, the factor (2n + 1) 
enters into these coefficients). The components of the fields 
E and H in the spherical coordinate system have the form  
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where the following notation has been introduced to simplify 
the derivations: ρ = k

0
R is the diffraction parameter, a = r/R 

is the normalized radial distance, and π
n
 and τ

n
 are the angular 

functions of the argument μ = cosθ. 
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(P
n 
(1)(μ) is the associated Legendre polynomial) 
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ψ
n
(mρa) is the Riccati–Bessel function, the prime denotes 

the derivative with respect to the argument.  
In accordance with the Poynting theorem the power 

absorbed inside the volume surrounded by the closed surface 
S is equal to  
 

W = – 
1
2 Re⌡⌠

S

[EH*]⋅ndS ,  

 

where n is the outward normal to the surface S, asterisk 
denotes the complex conjugation. It is obvious that 
S

s
 = S

1
 + S

3
 for the shadowed hemisphere and S

l
 = S

2
 + S

3
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for the illuminated hemisphere, where S
1
 is the surface area 

of the shadowed hemisphere (a = 1, 0 ≤ θ ≤ π/2, and 
0 ≤ ϕ ≤ 2π), S

2
 is the surface area of the illuminated 

hemisphere (a = 1, π/2 ≤ θ ≤ π, and 0 ≤ ϕ ≤ 2π), and S
3
 is 

the area of the plane boundary between the shadowed and 
illuminated hemispheres (0 ≤ a ≤ 1, θ = π/2, 0 ≤ ϕ ≤ 2π). It 
is obvious also that the unit vector e

r
 is the outward normal 

to S
1
 and S

2
 while the vector ±e

0
 (plus stands for S

s
 and 

minus is for S
l
). If the corresponding integrals will be 

denoted as W
1
, W

2
, and W

3
, the asymmetry parameter can 

be written in the form 
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Let us proceed to the derivation of the relations for W
1
, 

W
2
, and W

3
. In the expanded form the Poynting integral 

for W
1
 has the form  
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Substituting expansions (1) and (2) and making the 
integration over the angle ϕ we obtain  
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where A = πE
0
2
 ε

0
/2 k

0
2 μ

0
. Combining the terms and 

changing the order of integration and summation we obtain 
the equation  
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It is well known6 that  
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On the one hand, evaluating integral (8) for n = l results in 
some difficulties, but using the procedure of integration by 
parts and equations for the Legendre polynomials gives the 
following relation:  
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where ν
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 = l!!/(l – 1)!!. Thus, after some transformation 

instead of Eq. (5) we obtain  
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where ∑′ and ∑′′ denote the summation over the even and 
odd subscripts, respectively. Relation (11) for W

1
 can be 

considered as final (it should be noted that when taking into 
account Eq. (6) the first double sum separates into the 
product of ordinary sums). The relation for W

2
 can be derived 

from corresponding relation (5) for W
1
 if the limits of 

integration are replaced by (–1, 0). But when such a 
substitution is made, integrals (7) and (8) change the sign 
while the sign of integral (9) remains unchanged. As a result, 
W

2
 differs from W

1
 (see Eq. (11)) only by the opposite signs 

before the double sums.  
In the case of a plane boundary between the shadowed 

and illuminated hemispheres the Poynting integral has the 
form  
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Let us write out the components of the fields for μ = 0 
(taking into account Eq. (10)) 
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and substitute them into Eq. (12). After integrating 
function (12) over the angle ϕ we obtain  
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Unfortunately, we failed to eliminate the integral over a in 
formula (13), since the integrals of the form  
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have no closed analytical representation. We failed to obtain 
the recursive relations for n and l entering into Eq. (13).  

Therefore, relation (13) for W
3
 should be considered as 

final. Note that the domain of integration in Eq. (13) is rather 
"smooth" as far as the interference structure of the internal 
field is not virtually found here.2  

Thus, relations (4), (11), and (13) make it possible to 
calculate σ

ab
 analytically for the shadowed and illuminated 

hemispheres and the asymmetry coefficient of absorption η for 
a homogeneous sphere. The results of calculation of 
integral (13) (or more correctly, the functions X

n
, Y

n
, Z

n
, and 

V
n
 at the integrand points a

i
) make it possible to calculate 

simultaneously the function W(a) which describes the power 
absorbed by the spherical volume of the radius aR (Refs. 3 
and 4)  
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as well as the normalized intensity of a local electric field 
B(a) (Ref. 4) averaged over the angles θ and ϕ  
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Note that the equation derived in Ref. 4 is analogous to 
Eq. (15) but it has an error in the coefficient before the 
summation sign. The function B(a) related to the function of 
the heat sources by the elementary formula 
q(a) = 4πI

0
NκB(a)/λ, where I

0
 is the intensity of the 

incident wave, can be used in solving the problem of heating 
of an aerosol particle upon exposure to an electromagnetic 
wave in a one–dimensional approximation especially for small 
values of I

0
. For a = 1 relation (14) is virtually analogous to 

the Kattavar–Eisner formula for the absorption efficiency 
factor.  

Let us discuss some calculating aspects of the problem. If 
we introduce the logarithmic derivatives of the Riccati–Bessel 
functions ψ

n
 and the Riccati–Hankel functions ξ

n
  

 

D
n
(mρa) = 

ψ
n
′(mρa)

ψ
n
(mρa)

 , D
n
(mρ) = 

ψ
n
′(mρ)

ψ
n
(mρ) , Gn

(ρ) = 
ν
n
′(ρ)

ν
n
(ρ) ,  

 

and the ratio of the functions  

R
n
(mρa) = 

ψ
n
(mρa)

ψ
n
(mρ)  ,  

 

and take into account the explicit relations for the amplitude 
coefficients c and d (Ref. 1), equations (3) become 

X
n
(a) = 

im(2n + 1) R
n
(mρa)

ξ
n
(ρ) [G

n
(ρ) – mD

n
(mρ)] , Yn

(a) = X
n
(a) D

n
(mρa) ,  

 

Z
n
(a) = 

im(2n + 1) R
n
(mρa)

ξ
n
(ρ) [mG

n
(ρ) – D

n
(mρ)] , Vn

(a) = Z
n
(a) D

n
(mρa) .  

 

Thus, to calculate W
1,2

 it is necessary to obtain a set 

of functions D
n
(mρ), G
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n
(ρ), and ν

n
 while for 

numerical calculation of the integral W
3
 we need the 

functions D
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) and R
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) at every point a
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interval of integration a = 0–1.  
The functions ξ
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by the forward recursion  
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 = 1 while the functions D
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starting from the fixed number L = f L
W

, where L
W

 is the 

estimate of the number of the terms in the Mie series 
according to Ref. 8 and f is the empirical coefficient greater 
than unity. The appearance of the coefficient f is associated 
with the fact that the series in terms of the amplitude 
coefficients of the internal field converges slightly slower in 
comparison with the analogous series in terms of the 
coefficients of external field for which the estimate L

W
 was 

initially introduced. Our experience in calculations shows 
that f ∼ 1, 2. The initial value D

L
 is calculated using the 

Lenz continued fractions.9 
According to Ref. 10 the ratio of the functions 
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) is calculated by the forward recursion.  
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It is convenient to represent the initial value R
0
 in the form 

in which there are no factors of the form exp(κρ)  
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which can easily overflow the computer. 
Numerical integration of relation (13) was performed 

according to the Gauss quadrature formulas.11 The number of 
nodes n of the quadrature was preliminary estimated based on 
our experience in calculating the internal fields and than 
refined based on the convergence of Eq. (13) when the number 
of integration points increases. To obtain four significant digits 
in W

3
 n = 10–20 is sufficient in most cases being considered. 

Only sufficiently large and weakly absorbing particles 
(ρ > 100 and κ < 10–4) are the exception. In this case we had 

to use n– ∼ 30 and greater.  
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In conclusion I thank A.P. Prishivalko for the 
discussions which encourage this paper.  
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