
558   Atmos. Oceanic Opt.  /August  1991/  Vol. 4,  No. 8 V.G.Gusev 
 

0235-6880/91/08  558-06  $02.00  © 1991 Institute of Atmospheric Optics 
 

FORMATION OF HOLOGRAPHIC SHEAR INTERFEROGRAMS PRODUCED BY 

DIFFUSELY SCATTERED LIGHT FIELDS FOR CONTROL OF AN OPTICAL 

TELESCOPE  

 

V.G. Gusev  
 

V.V. Kuibyshev State University, Tomsk  
Received April 5, 1991  

 

A shear interferometer is analyzed based on a double–exposure hologram formed 
with the help of a Galilean telescope. It is shown theoretically and experimentally 
that the spatial filtering in the hologram plane enables checking the telescope over the 
field. Spatial filtering in the image plane of a mat screen makes it possible to record 
the interference pattern characterizing the phase distortions introduced in the 
reference wave by the aberrations of the optical system forming it. 

 
The method of differential interferometry using 

diffusely scattered light fields for checking quasispherical 
wavefront based on double–exposure recording of the 
Fourier lensless hologram was implemented in Refs. 1 and 
2. In its turn, a double–exposure recording of the Fresnel 
hologram3,4 can be implemented for checking the 
quasiplanar wavefront formed with a telescope. In the 
both above–indicated cases the holograms were recorded 
when the objective speckle fields were superimposed in 
the plane of the medium, in which the hologram was 
recorded. As shown in Ref. 5, a double–exposure 
recording of the image of a mat screen when this image 
was focused with the help of the Kepler telescope and the 
subjective speckle fields in the hologram plane were 
superimposed results in the formation of shear 
interferograms in fringes of infinite width for checking 
the telescope over the field.  

 

In this paper a method of the hologram recording by 
means of superimposition of the subjective speckle fields of 
two exposures for checking the Galilean telescope over the 
field is analyzed.  

As follows from Fig. 1, the mat screen 1 is illuminated 
with a quasiplanar wave, and a coherent diffusely scattered 
light is transmitted through the collimating system of lenses 
L

1
 (objective) and L

2
 (eyepiece). The hologram is recorded 

during the first exposure on the photographic plate 2 by a 
quasiplanar reference wave 3. Prior to the second exposure, 
the mat screen is displaced along the x axis at a distance a and 
the photographic plate is displaced along the same direction at 
a distance b.  

Ignoring the constant coefficients, we may represent in 
Fresnel's approximation the distribution of the complex 
amplitude of the field produced during the first exposure in 
the plane (x

4
, y

4
) of the photographic plate in the form  
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where k is the wave number, t(x
1
, y

1
) is the complex 

transmission amplitude of the mat screen and a random 
function of the coordinates, ϕ

0
(x

1
, y

1
) is the deterministic 

phase function characterizing the front distortions introduced 
in the illuminating wave by the wave aberrations of the 
optical system forming it, p

1
(x

2
, y

2
) expiϕ

1
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2
, y

2
) is the 

generalized pupil function of the objective6 with the focal 
length f

1
 which takes into account the wave axial aberrations,

p
2
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3
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3
) expiϕ

2
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3
, y
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) is correspondingly the generalized 

pupil function of the eyepiece with the focal length f
2
 of the 

Galilean telescope with optical baseline Δ = f
1
– f

2
, l

1
 is the 

distance between the mat screen and the principal plane of the 
objective, and l

2
 is the distance between the principal plane of 

the eyepiece and the plane of the photographic plate.  
Expression (1) can be represented in the form of 

convolution of the functions  
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are the Fourier transforms of the generalized pupil functions of the objective and eyepiece, respectively.  
 

Since, following Goodman,7 the width of the function 
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the coherent light source used for recording and reconstructing 
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amplitude in the plane of the photographic plate has the form  
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We will write the of distribution of the objective field complex amplitude recorded during the second exposure, in the plane 
(x

4
, y

4
) in the form  
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Based on the well–known properties of the Fourier transforms we can derive the following expression for the amplitude 
distribution in the plane of the photographic plate:  
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If the distances of the displacement of the mat screen and photographic plate prior to the second exposure satisfy the 
condition a = bf

1
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2
, then making use of the identity  
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which is proved by means of representation of the convolution in an integral form and by substitution of the corresponding 
values of the Fourier transforms, the complex amplitude of the field, recorded during the second exposure in the plane of the 
photographic plate takes the form  
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Let a double–exposure hologram thus recorded be reproduced by a copy of the reference wave, for which the distribution 
of the field in the plane (x

4
, y

4
) corresponds, e.g. , to the first exposure recording. In this case the diffraction field in the 

hologram plane is given by the expression  
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where ϕ
3
(x

4
, y

4
) is the deterministic phase function 

characterizing the distortions introduced in the reference 
wavefront by the aberrations of the optical system forming it.  

As follows from expression (7), in the hologram plane 
the speckle fields of two exposures with a typical size of the 
subjective speckle, being determined by the width of the 
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Δ of the tilt between the two  

speckle fields. As a result, the interference pattern 
characterizing the distortions introduced in the reference  

wavefront by the wave aberrations of the optical  
system forming it, is localized in the hologram plane. If 
the opaque screen P

3
 (Fig. 1) with a circular aperture 

centered on the optical axis is positioned in the plane in 
the plane (x
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) and the condition  
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plane, then the diffraction field at the exit from the 
filtering diaphragm is given by the expression  
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where p
3
(x

4
, y

4
) is the transmission function of the screen with circular aperture.9 

Let the positive lens L
3
 with focal length f

3
, for which the opaque screen P

3
 with circular aperture is an aperture 

diaphragm, be placed in the hologram plane (Fig. 1). In this case we may write the diffraction field at the distance l
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 from the 

diaphragm in the form  
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If the image of the mat screen is formed in the plane (x
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is the Fourier transform of the transmission function of the screen with circular aperture.  
As follows from expression (10), if the condition (D
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1
, where D

0
 is the diameter of the illuminated spot of the 

mat screen during the double–exposure record of the hologram is satisfied, then within the region of overlap of images of the 
eyepiece pupils the identical speckles of the two exposures are superimposed. It then follows that the interference pattern is 
localized in the plane (x
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). Indeed, if in expression (10) the period of variation of the function  
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which describes the speckle structure modulated by the 
interference bands. The interference pattern is the shear 
interferogram in fringes of infinite width. The interferogram 
characterizes axial wave aberrations of the Galilean 
telescope and phase distortions introduced in the 
illuminating wavefront by the wave aberrations of the 
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FIG. 1. The optical scheme used for recording and 
reconstructing a double–exposure hologram: 1) mat screen, 
2) photographic plate–hologram, 3) reference beam, and  
4) recording plane of the interference pattern; L

1 
, L

2 
, and 

L 
3
 are lenses; P

1 
, P

2 
, and P

3
 are aperture diaphragms.  

 

Based on expression (7), we can conclude that the 
information about the phase distortions introduced in the 
light wave by the objective and the eyepiece is contained 
in an individual speckle in the hologram plane. At the 
same time, in a small region of the hologram on the 
optical axis the field distribution deremined by the 
convolution P

1
(x

4
, y

4
)⊗P

2
(x

4
, y

4
) within every individual 

speckle is a result of diffraction of the plane wave,  

propagating along the optical axis, by the pupils of the 
objective and the eyepiece of the telescope.  

 

 
 

FIG. 2. Schematic diagram of recording of the 
interference pattern, localized in the hologram plane, with 
spatial filtering in the image plane of the mat screen.  
 

Hence it follows that the aperture diaphragm in the 
hologram plane in Fig. 1 enables us to record independently 
the narrow range of spatial frequencies in the spatial spectrum 
of the waves scattered by the mat screen near the optical axis. 
The displacement of the aperture diaphragm along the x axis 
results in the formation of the shear interferogram 
characterizing a combination of the on–axis and off–axis wave 
aberrations introduced in the light wave by the objective and 
eyepiece of the telescope, since in this case the aperture 
diaphragm enables us to record independently the narrow 
range of the spatial frequencies near the spatial frequency 
x

40
(l

2
Δ2– MΔ2– NM2)/λΔ2, where x

40
 is the coordinate of the 

center of aperture diaphragm in the hologram plane.  
In order to record the interference pattern localized in 

the hologram plane let us consider spatial filtering of the light 
field reconstructed by a double–exposure hologram in the 
image plane (x

5
, y

5
) of the mat screen in accordance with Fig. 2. 

Assuming that the diameter of the lens L
3
 exceeds the diameter 

of the reference beam, based on expression (7), we may write 
the amplitude distribution of the diffraction field in the form  

 

∼ exp[ik(x
5
2 + y

5
2)/2l

3
]{t(– μ

1
 x

5
, – μ

1 
y

5
) expiϕ

0
(– μ

1 
x

5
, – μ

1 
y

5
) exp[ik(x

5
2 + y

5
2)μ

1
2(l

1
 – N)/2l

1
2)] * 

 

× p
1
(– μ

2 
x

5
, – μ

2 
y

5
)p

2
(– μ

3
 x

5
, – μ

3
 y

5
) expi[ϕ

1
(– μ

2
 x

5
, – μ

2
 y

5
) + ϕ

2
(– μ

3
 x

5
, – μ

3 
y

5
)] + U

2
(x

5
, y

5
)⊗ 

 

⊗t(– μ
1
x

5
, – μ

1 
y

5
) expi[2ϕ

0
(– μ

1
 x

5
, – μ

1
 y

5
) – ϕ

0
(– μ

1
 x

5
 + a, – μ

1
 y

5
)] p

1
(– μ

2
 x

5
 – aN/l

1
, – μ

2 
y

5
) 

 

× p
2
(– μ

3
 x

5
 – aNM/l

1
Δ, – μ

3
 y

5
) expi[ϕ

1
(– μ

2
 x

5
 – aN/l

1
, – μ

2
 y

5
) + ϕ

2
(– μ

3
 x

5
 – aNM/l

1
Δ, – μ

3
y

5
)]},  (12) 
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is the Fourier transform of the function exp i[ϕ
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If within the diameter of the aperture diaphragm p
3
 (Fig. 2) centered on the optical axis the condition  
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is satisfied, i.e., the diameter of the filtering aperture does not exceed the width of the interference band in the interference 
pattern localized in the image plane of the mat screen, the distribution of the field amplitude at its exit is determined by the 
expression  

 

u(x
5
, y

5
) ∼ p

3
(x

5
, y

5
)exp[ik(x

5
2 + y

5
2)/2l

3
]{t(– μ

1
 x

5
,– μ

1
 y

5
) exp[ik(x

5
2 + y

5
2)μ

1
2 (l

1
 – N)/2l

1
2]⊗[1 + Φ

1
(x

5
, y

5
)]} .  (13) 

 

Let the positive lens L
4
 with focal length f

4
 reform the light field at the distance l

4
 in the plane (x

6
, y

6
) so as we may 

write the amplitude distribution in Fresnel's approximation in the form  
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If in the plane (x
6
, y

6
) an image of the hologram is constructed and 1/f

3
= 1/l

3
+ 1/l

4
, then after substituting 

expression (13) into expression (14) we obtain  
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where μ
4
= l
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/l

4
 is the scale factor of image transformation,  

 

F[kx
6
/l

4
, ky

6
/l

4
] = 

⌡⌠
–∞

⌡⌠
∞ 

t(– μ
1
 x

5
, – μ

1
 y

5
) exp[ik(x

5
2 + y

5
2)μ

1
2 (l

1
 – N)/2l

1
2] exp[– ik(x

5
 x

6
+ y

5
 y

6
)/l

4
]dx

5
dy

5
 ;  

and 

P
3
(x

6
, y

6
)} = 

⌡⌠
–∞

⌡⌠
∞ 

p
3
(x

5
, y

5
)exp[– ik(x

5
 x

6
 + y

5
 y

6
)/l

4
]dx

5
dy

5
 

 

are the Fourier transforms of the corresponding functions.  
It follows from expression (15) that in the plane (x

6
, y

6
) the identical speckles of the two exposures are superimposed. If 

the period of variation of the function 1 + expi[ϕ
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)] exceeds the speckle size 

determined by the width of the function P
3
(x

6
, y

6
), then we may take this function in expression (8) outside the integral 

convolution. In this case the superposition of the correlating speckle fields results in forming the illuminance distribution  
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which describes the speckle structure modulated by the 
interference bands. Here the interference shear pattern 
characterizes the distortions introduced in the reference 
wavefront by the wave aberrations of the optical system 
forming it.  
 

      
 

FIG. 3. Shear interferograms localized in the image plane 
of the mat screen and recorded when performing on–axis 
(a) and off–axis (b) spatial filtering.  
 

In the experiment, the double–exposure holograms were 
recorded on Mikrat–VRL photographic plates using a He–
Ne laser at a wavelength of 0.63 mm. At the preliminary  

stage, a double–exposure Fresnel hologram was recorded 
using the method proposed in Refs. 3 and 4 for checking the 
quasiplanar illuminating wavefront. The investigations have 
shown that the beam 27 mm in diameter formed by the 
chosen collimating system of lenses, was subject to the 
phase distortions of the wavefront which satisfied the 
condition [∂ϕ

0
(x

1
, y

1
)/∂x

1
]a ≤ π for the quantity a not 

exceed 2 mm. Then, in accordance with Fig. 1, a double–
exposure hologram was recorded with the help of the 
Galilean telescope with positive lens with the 140 mm focal 
length (the pupil diameter was 22 mm) and with the 
negative lens with the 70 mm focal length (the pupil 
diameter was 11 mm). The distances l

1
 and l

2
 were 60 and 

230 mm, respectively. The diameter of the reference beam 
was 40 mm. Figure 3a shows the shear interferogram 
recorded when performing a spatial filtering on the optical 
axis in the hologram plane and reconstructed by a small–
aperture laser beam ∼2 mm in diameter.  

The interference pattern is localized in the image plane 
of the mat screen. This is indicated by a mark "T", which 
was drawn on the mat screen and characterized the spherical 
aberration of the telescope with postfocal defocusing. The 
distances at which the mat screen, and photographic plate  
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were displaced prior to the second exposure were 
a = 1.5 ± 0.002 mm and b = 0.75 ± 0.002 mm, respectively. 
The displacement of the hologram relative to the laser beam 
used for reconstruction of this hologram toward the 
displacement prior to the second exposure leads to 
independent recording of the interference pattern. The latter is 
shown in Fig. 3b for the case in which x

40
= 4.5 mm and 

characterizes a combination of the on–axis and off–axis wave 
aberrations (Fig. 3a).  

 

 
 
FIG. 4. Shear interferogram localized in the hologram plane. 

 
The reconstruction of the double–exposure hologram in 

accordance with Fig. 2 when performing the spatial filtering 
of the reconstructed field on the optical axis in the image 
plane of the mat screen results in recording of the interference 
pattern localized in the photographic plate–hologram, which 
is shown in Fig. 4. The interference pattern characterizes the 
phase distortions introduced in the reference wavefront by the 
aberrations of the optical system forming it.  

Figure 5 shows a shear interferogram recorded with the 
spatial filtering on the optical axis in the hologram plane 
based on the double exposure recording with the help of 
theater binoculars at 2.5X magnification (a = 2 ± 0.002 mm 
and b = 0.8 ± 0.002 mm). The interference pattern 
characterizes the predominant wave aberration of the coma 
type, which is explained by decentering of the movable 
correction lens, whose displacement along the system axis is 
used for adjustment of the focal lengths.  

Thus, the recording of the double exposure hologram 
when transmitting the diffusely scattered light through the 
Galilean telescope and when the subjective speckle fields are 
superimposed in its plane results in the formation of the 
interference shear patterns. In this case, in the image plane of  

the mat screen an interference pattern is generally localized 
which takes into account the wave aberrations of the telescope 
and of the optical system forming the wavefront of the 
illuminating beam. The interference pattern characterizing the 
wave aberrations of the reference beam is localized in the 
hologram plane. Recording the interference patterns is possible 
when performing spatial filtering in appropriate planes.  

 
 

 
 

FIG. 5. Shear interferogram characterizing the wave 
aberrations of binoculars at 2.5X magnification.  
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