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Distortions of an image caused by their digitizing with a frequency lower than 
Nyquist's frequency are analyzed. The expediency of the low–frequency prefiltration 
of the images are shown. A method of restoration with the help of several copies of 
image being digitized with a displacement, which makes it possible to reduce the 
moire effect, is proposed.  

 

Analog–to–digital conversion of images, which 
incorporates spatial discretization and quantization of their 
intensity distributions, is an obligatory operation of the 
state–of–the–art opto–computing systems. The accuracy of 
its performance largely predetermines the possible ways of 
subsequent processing of the images. Thus, if the optical 
system, which forms an image, has the angular resolution 
λ/D, where λ is the wavelength of light and D is the 
diameter of the receiving aperture then, in order to store the 
information with this resolution, the discretization step Δ 
must not exceed Δ

0
 = λ/2D. This condition is well known 

as Nyquist's criterion. When it is violated the overlap of 
the image spectra occurs, which distorts the fine details of 
the image and is called the moire–effect.1 In this paper, we 
shall examine some possible ways of compensating for this 
effect. In so doing, for simplicity of mathematical 
operations, we will restrict ourselves to the one–
dimensional analysis.  

In the case of the one–dimensional digitizer, the 
output intensity distribution I

D
(x) is related to the initial 

intensity distribution I
0
(x) of the image as  

 

I
D
(x) = I

0
(x) ∑

j=–∞

∞

 δ(x – jΔ) . (1) 

 

For the corresponding Fourier spectra, which are defined 
according to the rule  
 

I
~
(f) = ⌡⌠

–∞

∞

 dx I(x) exp{2πifx} , (2) 

 

the relation follows from Eq. (1)  
 

I
~

D
(f) = Δ–1 ∑

j=–∞

∞

 I
0
(f – jΔ–1) , (3) 

 

i.e., the spectrum of the digitized image is obtained by an 
infinite repetition of the initial image spectrum of the image 
displaced by the distances multiple of Δ–1. Since the 
spectrum of the optical image is nonzero only when 
⏐f⏐ ≤ f

D
, where f

D 
= D/λ is the diffraction frequency of 

the cut–off, then when Nyquist's condition Δ ≤ Δ
0 

holds, 

where Δ
0
 = (2f

D
)–1, the zeroth order term in Eq. (3) can be 

easily separated out, e.g., by transmitting I
D
(f) through the 

low–frequency filter P
~
(f) which is equal to unity in the 

interval ⏐f⏐ < (2Δ)–1 and to zero outside it. As a result, the 
initial image can be restored. When Δ > Δ

0
 , the overlap of 

the terms of the zeroth order and of the higher order occurs.  

This results in distortion of information at the frequencies, 
which satisfy the inequality (Δ–1 – f

0
) < ⏐f⏐ ≤ f

0
, and is 

manifested in false details of the image. The effect of overlap 
can be eliminated, if prior to digitizing the image is 
transmitted through the above–mentioned low–frequency 
filter.1 In so doing, the information at the frequencies  
Δ–1/2 < ⏐f⏐–1 ≤ f

D
 will be lost. Since Δ–1/2 > (Δ–1 – f

D
), the 

image thus obtained proves to be a more accurate copy of the 
initial image.  

It is assumed that in real systems this low–frequency 
filtration is realized in a natural way due to averaging of 
their intensities over the photosensitive surface of the 
elementary sensor of the digitizer (recorder). 
Mathematically, this is equivalent to digitizing of the 
smoothed distribution  

 

I(x) = ⌡⌠
–∞

∞

 dy I
0
(y) P(x – y) , (4) 

 

rather than I
0
(x), where P(x) is the effective function of 

the sensor response. For the spectrum I
~
(f), it follows from 

Eq. (4) that  
 

I
~
(f) = I

~

0
(f) ⋅ P

~
(f) . (5) 

 

P(x) is usually assumed to be equal to Δ–1 in the interval 
⏐x⏐ ≤ Δ/2 and to zero outside it, so that the following 

expression turns out to be valid for P
~
(f):  

 

P
~
(f) = 

sinπfΔ
πfΔ  . (6) 

 

Such a filter does decrease the distortions caused by 
overlapping of the spectra, but it simultaneously attenuates 
the undistorted image. As a result, the image quality may be 
as low as previously. Results of the mathematical experiment 
are shown in Fig. 1. The initial image a, which is specified by 
the 64⋅64 array of digits for Δ

0
 = 1 was digitized with the 

discretization step Δ = 2 in two different ways: b – by simply 
digitizing in a step and c – by pretransmitting through the 
filter P(fx)⋅P(fy). The normalized error ε of restoration of the 

images b and c, in comparison with a, was defined by the 
formula  
 

ε = 
⌡⌠ ⏐I

0
(f) – I

D
(f)⏐2df

⌡⌠ ⏐I
0
(f)⏐2df

 . (7) 
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FIG. 1. The results of digitizing of the images: the initial model image (a), simple digitizing in a step (b), and 
digitizing with smoothing over the 2⋅2 pixels (c).  
 

 

 
 
FIG. 2. The results of restoration of the images with the help of the displaced digitized images: the initial model 
image (a), its characteristic digitizing in a step (b), and the image restored with the help of 50 displaced copies of 
the form b (c). 
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This error was equal to 0.163 and 0.167 for the images  
b and c, respectively. It should be noted that in both 
cases the effective resolution of the image was not better 
than 2Δ.  

It is possible to propose another way for decreasing 
the error due to the overlap of the spectra. It is based on 
the use of several copies of the initial image. Thus, if the 
digitizer is displaced by the distance θ, the following 
relation is valid for the spectrum of the new image:  

 

I
∼θ

D
(f) = Δ–1 ∑

j=–∞

∞

 I
∼

0
(f – jΔ–1) exp{ }– 

2πi
Δ  jθ  . (8) 

 
In the case in which θ is known, 2Δ

0 
≥ Δ > Δ

0
, and not more 

than two terms enter in Eqs. (3) and (8) at each frequency 
f, these equations can be regarded as a system of two linear 
equations in two unknown values. The solution of this 

system permits us to find exactly the initial spectrum I
∼

0
(f). 

In particular, at θ = Δ/2, the following equality is valid:  
 

I
∼
0
(f) = 

1
2 { }I

∼
D

0
(f) + I

∼
D 

Δ/2
(f)  . (9) 

 
If the quantity θ is random, but uniformly distributed over 
the interval (–Δ/2; Δ/2), then in order to approximately 

restore I
∼

0
(f), it is sufficient to average Eq. (8) over the 

series of realizations. Since  
 

<exp( )– 
2πiΔ
Δ  jθ > = {1, at j = 0,

0, at j ≠ 0,  (10) 

 
then  
 

<I
∼

D

θ
(f)> = I(f) . (11) 

 
When the image itself, rather than the digitizer, is displaced 
by θ, the spectrum is equal to  
 

I
∼
D

θ
(f) = Δ–1{2πifθ} × ∑

j=–∞

∞

 I
∼

0
(f – jΔ–1) exp{ }– 

2πi
Δ  jθ  , (12) 

 

When θ is known, in order to find I
∼
0
(f) we must solve again 

the system of equations (3) and (12), while for random and 
uniformly distributed quantity θ one should average the 
spectra. However, in contrast to Eq. (11), the product of the 

form I
∼θ
D
 (f) exp{–2πifθ}, rather than the spectra themselves 

must be averaged; otherwise, after averaging we will arrive at 
the spectrum of the form (3) of the digitized image. In order 
to estimate the quantity θ in this case, we can use the method 
of determination of the displacement of the intensity 
distribution centroid. This method is based on measuring the 
displacement of the centroid of the image with respect to the 
initial one. The centroid of the image is found according to the 
formulas  
 

x
c
 = 
⎝
⎛

⎠
⎞

⌡⌠ ⌡⌠ x ⋅ I
∼θ
Δ
(x, y)dxdy /

⎝
⎛

⎠
⎞

⌡⌠ ⌡⌠ I
∼θ
Δ
(x, y)dxdy ,  (13) 

 

y
c
 = 
⎝
⎛

⎠
⎞

⌡⌠ ⌡⌠ y ⋅ I
∼θ
Δ
(x, y)dxdy /

⎝
⎛

⎠
⎞

⌡⌠ ⌡⌠ I
∼θ
Δ
(x, y)dxdy  , (14) 

 

The error in the determination of the centroid using this 
method is small given that the discretization step Δ ≤ 2Δ

0
. 

Indeed, the integrals, which enter in the right side of 
equalities (13) and (14), can be regarded as the Fourier 
transform at the point fx = 0 and fy = 0, while the amplitude 

of the spurious spectra at this point equals 0 when Δ ≤ 2Δ
0
. If 

Δ > 2Δ
0
, the error in determining the centroid of the image 

with Δ. Figure 2 illustrates this method. Figure 2a shows the 
initial image, Fig. 2b – the image at Δ = 2Δ

0
, and Fig. 2c – 

the image restored with the help of 50 identical copies. The 
error ε equals 0.413 and 0.147, respectively. Thus, by way of 
processing of several copies of the image digitized with the 
discretization step Δ, we can restore the image, which has the 
quality corresponding to the discretization step at least Δ/2.  
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