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As is well known, the process of gas–dynamical evaporation of high–melting 
aerosol particles in a powerfull optical field in vacuum is accompanied by active 
condensation of vapors and formation of new particles. In this paper a thermodynamic 
method of estimating the vapor condensation ratio is discussed. Normally the system 
of gas–dynamical equations describing the vapor outflow is solved numerically, while 
in this paper an analytical solution of this system in quasistationary approach based 
on the isentropic character of the vapor outflow from the particle surface is obtained. 
The obtained results make it possible to formulate the problem of the determination of 
the optical cross section of the particle + condensate system. 

 
When high–power optical radiation with an intensity of 

∼ 109 W/m2 propagates through a disperse medium containing 
high–melting particles the latter can be heated up to the 
temperatures up to ∼ 3000 – 5000 K.1 At so high temperatures 
the pressure of saturated vapors of the aerosol particle 
substance is, as a rule, much higher than the atmospheric 
pressure. Under these conditions the separation of vaporizing 
substance from the particle surface takes place with a high 
speed that makes the diffusion model of vaporization 
inapplicable. A model of an isolated aerosol particle 
evaporation in the field of laser radiation, which enables one 
to calculate the speed of separation of fragments and the other 
thermodynamic characteristics of vapor in the medium with 
counter pressure, has been developed in Refs. 2 and 3. As was 
shown in Ref. 4, the vapor while moving from the surface of 
the particle, is rapidly cooled and becomes oversaturated. 
Hence it follows that the adequate model of a high–melting 
particle evaporation should allow for the vapor recondensation 
and formation of a cloud of secondary particles. Interaction of 
radiation with such disperse media can result in new nonlinear 
effect due to the recondensation because of the transformation 
of the optical properties of the system due to the formation of 
the secondary particles. 

In this paper we study the model of interaction between 
the laser radiation and a separate immobile high–melting 
particle in vacuum which takes into account the formation of 
the secondary aerosol particles due to the vapor condensation. 
This model can be useful for the solution of the problem of 
determining the optical cross section of the 
particle + condensate system. 

Let us assume that a spherical aerosol particle of radius a 
is placed in the field of laser radiation and is heated up to the 
temperature Ts. It is clear that the temperature of the particle 

surface is determined by the radiant flux density, optical 
properties of the evaporating particle, and, of course, by the 
energy losses due to evaporation and reemission. However, at 
this stage we assume the temperature of the particle surface to 
be preset. In this case the gas–dynamical equations describing 
the separation of the substance evaporated from the particle 
surface can be written as follows:  
 

∂ρ

∂t
 + div(ρν) = 0 , 

 
∂ν

∂t
 + (ν, Δ) ν + 

1
ρm0

 grad P = 0 . (1) 

 

Here ρ = ρ(t, r) is the number density of atoms or 
molecules of the evaporated substance, r is the distance 
from the particle center to the point of observation, 
ν = ν(t, r) is the speed of the vapor separation, m0 is the 

mass of atom or molecule, and P = P(t, r) is the vapor 
pressure. 

Note that the molecules of the evaporating substance 
can be both in the gaseous and in the condensed (either 
solid or liquid) phases. If the vapor condensation ratio is 
defined as  

 

x(T) = 
ρc

ρg + ρc
 = 

ρc

ρ
 , (2) 

 
where ρc is the number density of molecules in a condensed 

phase and ρg is the number density of molecules in the gas 

phase, then we have ρc = xρ and ρg = (1 – x)ρ.  

Characteristic relaxation time of the thermodynamic 
parameter fields t ∼ a/ν ∼ 10–8 s for a ∼ 10 μm and 
ν ∼ 1000 m/s. At the same time the characteristic time of the 
particle size change due to its evaporation is of the order of 
tev ∼ 10

–4 s according to Ref. 3. As a consequence, the radius 

of the particle varies only slightly in the course of the field 
relaxation. Therefore, Eqs. (1) can be solved in a 
quasistationary approach, according to which all 
thermodynamic characteristics of the vapor depend on time 
only parametrically via slowly varying boundary conditions. 
In the quasistationary approach the temperature of different 
points of the particle surface is practically identical, though 
the particle is heated up by the laser radiation only from one 
side.5 Taking this into account and neglecting the initial quite 
short time interval from the start of the laser action we can 
solve this problem assuming the spherical symmetry.  

In this case Eqs. (1) take the form  
 

1

r2 
d
dr (r

2ρν) = 0 ; 

 

1
ρm0

 
dP
dr  + ν 

dν
dr = 0 . (3) 

 

The system (3) is open. It can be closed in two ways 
corresponding to two different regimes of the vapor 
outflow.  
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1. In the region where the vapor is supersaturated we 
can assume the process of the vapor expansion to be 

adiabatic and then we have P = αργ, where α is the 
constant determined from the boundary conditions and γ is 
the adiabatic exponent.  

2. In this regime the vapor is saturated or 
supersaturated. In this case there exists a relatively small 
region4 where the supersaturation ratio differs from unity. 
The supersaturation ratio δ in the region of intense 
nucleation is about 103 (estimates of this value are given 
below). Out of this region the vapor expansion follows the 
adiabat of the two–phase system, the supersaturation ratio 
is equal to zero, and the excess of vapor is condensed on the 
previously formed condensation nuclei. The pressure of 
vapor in this region is equal to the pressure of saturated 
vapor. We consider the latter to be a well–known function 
of temperature6 

 

Ps = P
∞
exp (–L/kT) , (4) 

 

where T is the temperature of vapor in the field of 
observation , L is the heat of evaporation of one atom of 
particle substance, k is the Boltzmann constant, and P

∞
 is 

the factor of dimensionality. Then using Eq. (2) we obtain  
 

ρ = 
P

∞
exp (–L/kT)
(1 – x) kT  , (5) 

 
where the unknown temperature can be determined from the 
condition  

 

T = 
L

k lnP
∞
/P

 . (6) 

 
The relations (4)–(6) together with Eq. (3) could 

make a closed system of equations if the function x(T) were 
known.  

The number of vapor molecules colliding with the surface 

of a secondary particle per second is dN/dt ∼ ρ⋅ν–⋅a2
sp. It then 

follows that the radius of the secondary particle will change 
with rate  
 
dasp

dt  ∼ 
m0ρ

ρsp
 ν
–

 , 

 

where asp is the radius of the secondary particle, ν– is the 

mean thermal velocity of the vapor molecules, and ρsp is the 

density of the secondary particle substance. Note that the 
values ρ and ρsp have different dimensionalities (see 

formula (1)). Then the characteristic time of the secondary 
particle radius change is  
 

τ ∼ 
aspρsp

m0 ρν
– . 

 

Let us now estimate this time and the size of the region in 
which the formation of secondary particles occurs. 

At temperature T ∼ 103 K the vapor pressure is close in 
value to the atmospheric one hence m0ρ ∼ 1 kg/m3. As is well 

known (see Ref. (7)), asp ∼ 10
–9 m, then τ ∼ 10–9 s. The size 

of the region where the formation of the nucleation centers 

takes place is d ∼ ν–τ ∼ 10–6 m, and the characteristic time of  

the vapor expansion from the particle surface is a/ν– ∼ 10–8 s. 
Therefore, in the first–order approximation we can assume 
that all the excess vapor is instantaneously condensed on the 
nucleation centers formed within a small region and the vapor 
is in thermodynamic equilibrium with the condensed phase. In 
this approach the condensation ratio can be found using 
thermodynamic methods. 

Let us now consider a small volume V containing the 
constant number of atoms N0. Let this volume move from 

the particle together with the flow of vapor, which is 
composed of saturated vapor and condensate. 

Assuming the expansion of this volume to be adiabatic, 
we have  

 
dU + PdV = 0 , (7) 
 
where  

 

dU = (ρ2VCg + ρcVCc) dT –Ld (ρcV) . (8) 

 
Here dU is the variation of the internal energy of the two–
phase (vapor + C–phase) system within the volume V being 
studied. Cc and Cg are the specific heat per atom of the C–

phase and the gas, respectively. 
Using the definition of the function x(T) we can write 

the relation for the elementary work 
 

δA=PdV=–kT(Vdρg + N0dx)=k(1 – x)(L/kt –1) dT + dx.(9) 

 
Within the frameworks of the above approximations 
P = Ps(T) we have 

 
P = P

∞
exp (–L/kT) . (10) 

 
On account of Eqs. (8) – (10) and after simple 
transformations Eq. (7) takes the form (in dimensionless units) 

 

dx
dθ

 =
1
θ
 
C~ – (1 – x)(L~/θ – 1)

L~/θ + 1
 , (11) 

 

where θ = T/Ts, L~ = L/kTs, C~ = (Cc⋅x + (1 – x)⋅Cg)/k. 

Equation (11) with the initial conditions x = 0 and T = Tc, 

where Tc is the temperature of the medium at the point 

where the vapor pressure is equal to that of saturated vapor, 
can be solved numerically. If the vapor near the particle 
surface is saturated, then T = Ts.  

In the case of the carbon particle evaporation, 
L = 1.19⋅10–18J/atom and Ts = 5000 K and the inequality 

L~/θ > 1 is always valid. As a result, Eq. (11) can be 
written in the form: 

 

dx
dθ

 = 
C~

L~
 – 

1 – x
θ

 . (12) 

 
Estimation of the order of the quantities in the right 

side of Eq. (12) 
 

C~/L~ ∼ kTs/L ∼ 10–2,  
1 – x

θ
 ∼ 1 , 

 
show that the first term of this equation can be neglected. 
The equation with the above–indicated initial conditions  
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dx
dθ

 = – 
1 – x

θ
 (13) 

 

can be easily solved analytically.  
Figure 1 presents the function x(θ) obtained by 

numerical solution of Eq. (11).  
 

 
 

FIG. 1. The carbon vapor condensation ratio as a function 
of T/Ts at Ts = 5000 K. 

 

It follows from Eq. (11) that as θ → 0, x → 1. This, in 
fact, is a natural consequence of the thermodynamic 
method. However, in practice, certain portion of the 
particle substance in the gas phase volatilizes in gaseous 
phase. The extreme value of the condensation ratio xex can 

be estimated as the value of x(θ) at the point in which the 
free path became approximately equal to the size of the 
aerosol particle and the thermodynamic equilibrium is not 
established. 

Thus, within the framework of the above approach, the 
closed system of equations in the region of condensation 
takes the form 
 

1

r2 
d
dr (r

2ρν) = 0 ; (14) 

 

1
ρm0

 
dP
dr  + ν 

dν
dr = 0 ; (15) 

 

ρ = P/{(1 – x) kT} ; (16) 
 

T = L/(klnP
∞
/P) ; (17) 

 

x = 1 – T/Tc . (18) 
 

Boundary conditions for this system are prescribed on 
the particle surface and have the form8  
 

ρ0 = 0.31ρs ; (19) 
 

x0 = 0 ; (20) 
 

ν0 = c = 
5kT0

3m0
 ; (21) 

 
T0 = 0.65Ts . (22) 

 
Prior to the vapor condensation, the system (14) –

 (18) with the boundary conditions (19) – (22) can be 
solved analytically. 

Taking into account the law of conservation of the 
evaporating substance flow  

j = 4πr2ρν = const (23) 
 
and assuming the evaporation process to be adiabatic, we 
can write, after some transformations, Eq. (15) in the form  

 
dρ
dr = 

ρ

r 
2(ν/c)2

1 – (ν/c)2 , (24) 

 

where c = 
5kT
3m0

 is the local speed of sound. As is well 

known, Eq. (24) describes two regimes of evaporation, i.e., 
the subsonic and supersonic ones. 

In the subsonic regime the initial rate of evaporation is 
lower than the speed of sound and, as can be seen from 
Eq. (24), dρ/dr > 0. As a consequence, the density of vapor 
increases with distance from the surface of evaporating 
particle. It is clear that in the case of evaporation in 
vacuum this regime contradicts the condition ρ(∞) → 0. In 
the supersonic regime dρ/dr < 0 and the density of vapor 
decreases with distance from the particle center. 

In the case of the carbon particle evaporation it can be 
seen from Eq. (19) that already on the particle surface the 
vapor is supersaturated. In fact, the condensation of vapor 
starts in a small region near the particle surface (the size of 
this region has been determined above) and the quantity x 
here differs from zero. At the same the temperature of the 
two–phase system increases from T = 0.65 Ts up to T′ as a 

result of time the release of the latent heat of condensation 
due to formation of the C–phase. This means that from the 
very beginning of the condensation process new boundary 
conditions are needed. 

Assuming that out of this region the density of vapor 
is equal to that of saturated vapor, we can rewrite the 
boundary condition (19) in the form  

 

ρr0(T′) = ρs(T′) = 
P
∞

kTs
 exp ( – L/kT′) . (25) 

 
On account of Eqs. (19) and (25), we can write the 

following relation for the supersaturation ratio with such a 
discontinuity of the evaporating substance density 
 

δ = 
P – Ps

Ps
 = 

0.31exp ( – L/kTs)

exp ( – L/0.65Ts k)
 – 1 , 

 

At temperature Ts = 5000 K δ is on the order of 103.  

Using the definition of the condensation ratio and 
taking into account Eqs. (19) and (25) we can estimate x at 
the temperature T′ as follows: 

 

x(T′) = 
ρ0 – ρr0(T′)

ρr0(T′)
 . (26) 

 

The speed of vapor separation in this region is assumed 
to be equal to the sound speed in gas and the boundary 
condition (21) remains unchanged. 

Thus, taking into account Eqs. (21) and (26), we can 
write new boundary conditions for the system of gas–
dynamical equations (14) – (18) in the form 

 

ρr0′  = ρs(T′) ;  x0 = (ρ0 – ρr0′ )/ρr0′ ;  ν0 = c . (27) 
 

Unknown temperature T′ in Eq. (27) will be 
determined below and, therefore, this system of boundary 
conditions becomes closed. 
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Assuming that the expansion of a gas in vacuum is an 
isentropic process, we can solve Eqs. (14) and (15) with 
boundary conditions (27) analytically.  

Transforming Eq. (15) to a form 
 

d
dr ⎝
⎛

⎠
⎞m0ν

2

2  + V 
dP
dr  = 0 (28) 

 

and using the well–known thermodynamic relations for 
energy and enthalpy of the system  
 

dE = TdS – PdV,  dW = d(E + PV) , 
 

as well as taking into account Eq. (7) we find that 
V dP = dW. In this case Eq. (28) takes the form  
 

d
dr ⎝
⎛

⎠
⎞m0ν

2

2  +W  = 
dW′

dr  = 0 . (29) 

 

W′ = (1 – x) CpT + CcxT – Lx + 
m0ν

2

2  , (30) 

 

where Cp is the specific heat of the gas at constant pressure.  

The boundary condition for W0′ by virtue of Eqs. (21) 

and (22) will take the form  
 

W0′ = CpT0 + 
m0c

2

2  . (31) 

 

Let us find the boundary condition for the temperature 
of the two–phase system. Since the value W′ remains 
constant and is equal to W0, we obtain the following 

expression for the temperature of the two–phase system:  
 

T′ = 
CpT0 + Lx

Cp(1 – x) + Ccx
 . (32) 

 

In order to find the values of the condensation ratio 
and temperature T′ of the gas, we must solve the system of 
two algebraic equations (26) and (32). Inverting and 
making log–to–linearization of Eq. (32), we obtain  
 

T′ = 
L

k (ln A + x) , (33) 

 

where 
 

A = 1/[0.31 exp ( – L/kTs)] . 
 

Solving simultaneously Eqs. (32) and (33) we find 
that x0′ = 0.04. Then T′ = 4672 K. On account of these 

values, new boundary conditions take the form  
 

ρr0′  = ρs(T′) ; x0′ = 0.04 ; ν0 = c ; T′ = 4672 . (34) 
 

Provided that x(T) is well–known, we obtain from Eq. (30) 
the following relation for the vapor separation speed: 

 

ν= 
2
m0

 (W0′ – ((1 – x)CpT + CcxT – Lx)) . (35) 

 

On the other hand, it follows from the law of conservation 
of the evaporating substance flow that  

 

ν = j/4πr2ρ = 
j(1 – x)kTs

4πr2P
∞
e–L/kT , (36) 

 

where j can be determined from boundary conditions (34). 
By expressing r from Eq. (36) 

r = 
j(1 – x) kTs

4πP
∞
e–L/kTν

 

 

and taking into account that the function x(T) is well known, 
we can determine the fields of pressure, temperature, and 
density of vapor in the vicinity of the particle. 

The calculations of the fields of temperature, pressure, 
and density of vapors in the vicinity of the particle with the 
radius a = 100 μm at surface temperature 5000 K have been 
made in this paper both analytically and numerically. 

The analytical and numerical results are practically 
identical in the scale used in this paper for the figures. In fact 
the difference between so–obtained results is 5 – 10 %. Based 
on this fact we can state that the method enables one to 
determine the thermodynamic characteristics of the system 
without numerical solution of the gas–dynamical equations. 

Figure 2 shows the dependence of the speed of vapor 
separation on the reciprocal distance from the primary 
particle. It can be seen from this figure that the separation 
speed increases for the entire interval of values r.  

 

 
 

FIG. 2. The separation speed of carbon vapor as a 
function of the reciprocal distance from the primary 
particle for a = 100 μm at Ts = 5000 K.  
 

Figures 3 and 4 show the dependences of temperature 
and condensation ratio of the vapor on the reciprocal 
distance, respectively. One can see from Fig. 4 that for 
r ∼ 10 a the condensed phase contains ∼ 25% of the 
evaporated substance. Since in this region the free path is 
comparable with the size of particle, while the separation 
speed of vapor is much higher than the local sound speed, 
the fine fraction have no time to grow up and, as a 
consequence, certain portion of substance leaves the particle 
being in the gaseous state.  

 

 
 

FIG. 3. Temperature of carbon vapor as a function of the 
reciprocal distance from the primary particle for 
a = 100 μm at Ts = 5000 K.  
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FIG. 4. The condensation ratio of carbon vapor as a 
function of the reciprocal distance from the primary 
particle for a = 100 μm at Ts = 5000 K. 

 

CONCLUSIONS 
 

The proposed model of a high–melting particle 
evaporation in vacuum allowing for the recondensation process 
makes it possible to determine the characteristics of the two–
phase system, including the size distribution function (SDF) 
of secondary particles.  

It is obvious from the physical point of view that the 
SDF of the particles contained in any spherical layer is the 
δ – function of the form n(r) δ(a – a(r)), where n(r) is the 
number density of particles being dependent of the distance r 
due to the changes in the geometry of the expanding volume 
of substance and a(r) is the function of the particle size. 

As a result one can calculate, using this model, the value 
of light scattering cross section of the two–phase system 
 

σ = ⌡⌠
0

∞

κa(a) πa2(r) n(r) 4πr2 dr , 

 

where κp(a) is the scattering absorption efficiency of the 

particle with radius a. 

Simple estimations of the scattering cross section yield 
 

σ ≈ κa(a)π a2 N , 

 
where N is the number of secondary particles with mean 

radius a– contained in the spherical layer whose radius can 
be found from the condition of complete evaporation of the 
primary particle. Thus, for a particle with radius a = 10 μm 
the scattering cross section σ ∼ 10–8 m2.  

However more exact calculations of the scattering 
cross section of the two–phase system and more correct 
conclusions require the knowledge of n(r) and a(r) 
functions as well as more comprehensive analysis. 
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