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A theoretical analysis of the problem of interpretation of data on laser sounding 
of the atmosphere using two stationary lidars with angular scanning of the region 
under study has been carried out. An analytical solution describing the two–
dimensional spatial distribution of the attenuation and backscattering coefficients 
without using additional information about the functional dependence between the 
optical characteristics has been obtained. The proposed solution can be used with the 
aim of constructing new numerical algorithms for laser tomographic sounding with 
angular scanning.  

 
1. Introduction. The starting information in the study of 

the structure of a medium with the help of tomographic 
methods consists of a collection of projections including a 
family of integrals of the characteristics sought taken along 
different directions. As is well known, the lidar signal depends 
on the optical thickness of the atmosphere between the lidar 
and the scattering volume, which is also determined by 
integrating the volume attenuation coefficient along the 
sounding path. The integral dependence of the recorded signals 
on an unknown function sought after is a manifestation of a 
similarity of the methods of transmission tomography and laser 
sounding.  

In contrast to the conventional transmission tomography, 
the lidar signal is determined by the optical thickness of the 
atmosphere from the radiation source to the scattering volume 
as a function of the depth of penetration of the sounding pulse 
into the medium under study. This information could have 
been quite sufficient to reconstruct the spatial distribution of 
the attenuation coefficient without carrying out measurements 
along different directions, if the lidar signal had been 
multiplicatively independent of another unknown function, 
i.e., the volume backscattering coefficient. For this reason, in 
the case under consideration the problem consists in 
reconstructing the spatial distribution of two optical 
characteristics of the medium, i.e., the volume attenuation and 
backscattering coefficients, from data on monostatic laser 
sounding. As a rule, when solving such problems additional a 
priori information about the functional relation between the 
optical characteristics sought after is used or simplifying 
assumptions regarding their spatial structure are introduced. 
Now an advanced theory for solving the inverse problems of 
laser sounding of the atmosphere (see, e.g., Ref. 1) has been 
created.  

The tomographic approach to the problem of laser 
sounding of the atmosphere associated with retrieval of the 
data on the volume under study from the lidar signals 
recorded from different directions, was originally proposed by 
Weinman2 for observations made with the use of an airborne 
lidar. The reason for which the method of tomographic lidar 
sounding was originally considered for airborne lidars is the 
possibility of operative motion of the lidar relative to the 
spatial region under study. Moreover, now a sufficient 
experience in the use of the lidars for airborne study of the 
atmosphere has been already accumulated.  

 

The finite–difference algorithms for tomographic 
processing of the lidar signals in airborne sounding along 
two or three directions have been described in Refs. 2 and 
3. Solutions of integral equations for lidar tomographic 
airborne sounding in an analytical form have been obtained 
in Ref. 4. The logarithmic derivative method employed in 
Ref. 4 makes it possible to formulate and solve other 
problems of lidar tomographic sounding which do not 
require airborne measurements. In this paper the analytical 
solution of the problem of tomographic sounding for lidar 
configuration, which does not require motion of the lidar 
and is based on employment of two stationary lidars with 
angular scanning in some specified region, is presented.  

2. Formulation of the problem. Let us consider a 
mathematical formulation of the problem of two–lidar 
tomographic sounding with angular scanning.  

 

 
 

FIG. 1. Scheme of sounding. 
 
Figure 1 shows the scheme of sounding. The lidars are 

located at the points 1 and 2 separated at the distance D. 
Sounding is carried out from the points 1 and 2 in the plane 
which contains the straight line joining these points and the 
sounding directions n

1
 and n

2
. Let us specify in the sounding 

plane the Cartesian coordinate system (x, z), whose origin is 
at the point of location of the first lidar while the x axis is 
oriented along the line joining the points 1 and 2. Now the 
echo signal received by the ith lidar from the scattering 
volume located at the point r = (x, z) in a single–scattering 
approximation is given by the formula  
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) are the powers of the transmitted 

and received signals and A
i
 is the instrumental constant for 

the ith lidar, respectively; α(r) and β(r) are the volume 
coefficients of attenuation and backscattering at the point r. 
The sounding directions n

i 
(i = 1, 2) are characterized by the 

polar angles Z
1
 and Z
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 counted off from the z axis so that  
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The position of each point r = (x, z) of the volume under 
study is uniquely related to the polar angles  
 

ϕ
1
 = arcot(x/z),  ϕ

2
 = arcot( )D – x

z  . (3) 

 
The starting data for solving the inverse problem are a 

collection of lidar returns received from all of the points 
inside the region under study for two sounding directions. 
As a region under study, some bounded volume located 
between the lidars may be considered. The problem is to 
reconstruct the spatial distribution of the fields of two 
optical characteristics, i.e., the attenuation and 
backscattering coefficients α(r) and β(r), from the collection 
of lidar returns for the two lidars.  

3. Procedure for constructing the solution. In order 
to determine the unknown functions β(r) and α(r) from 
system (1) in an analogy with Ref. 4, let us take the 
logarithmic derivatives of both sides of the first equation 
with respect to the direction n

1
 and of both sides of the 

second equation with respect to the direction n
2
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where L(x, z) = ln β(x, z) and G

i
(x, z) = ln S

i
 (i = 1, 2). 

For the function L(x, z), each of Eqs. (4) is a partial 
differential equation, whose free term is determined by the 
lidar return and the other unknown function α(x, z).  

Before proceeding to the solution of system (4), let us 
make several remarks. As regards the writing form, 
system (4) is identical to system (4) of Ref. 4 which was 
obtained for the problem of tomographic sounding with a 
dual–beam airborne lidar. At the same time, typical 
internal distinctions, which are responsible for different 
procedures for constructing the solutions, are inherent to 
the two above–indicated systems. First, this concerns the 
right sides of system (4). The functions G

i
(x, z) (i = 1, 2) 

in Ref. 4 describe the lidar returns arriving from the point 
r = (x, z) from two different fixed directions n

i
, which do 

not change when the lidar moves. In the present paper, as 
has already been indicated, the functions G

i 
(x, z)  

determine the lidar returns from the point r, which are 
recorded by two lidars located at two different points 
i = 1, 2, while the scanning is due to varying the polar 
angles ϕ

1
 and ϕ

2
. Second, the coefficients at the partial 

derivatives in the equations of system (4), in contrast to 
Ref. 4, are not fixed and are dependent of the position of 
the point r. The form of these dependences is defined 
explicitly by the relations  
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where 
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After these remarks, let us proceed to the solution of 

system (4). A particular case should be noted preliminary, 
which follows from system (4) at z = 0. Among the 
variants, which are possible here, let us separate out the 
scheme, for which ϕ

1
 = ϕ

2 
= π/2 (sounding from the 

opposite directions). In this case, the coefficients at ∂L/∂z 
vanish and the system (4) is reduced to a form  
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where the sign plus corresponds to i = 2 and minus to i = 1. 
The solution of Eq. (6) with the boundary condition 
β(0, 0) = β

0 
= S

1
(0, 0) is given by the relations  
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The scheme and the solution for the problem of two–lidar 
sounding from the opposite directions were proposed in Ref. 5.  

Let us turn our attention to the solution of system (4) 
in general form. Let us change the variables in system (4)  
 

u(x, z) = sinϕ
1
 , ν(x, z) = sinϕ

2
 .   (8) 

 

In so doing, only the partial derivatives with respect to one of 
the variables will be preserved in each equation of system (4)  
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The right sides in system (9) have the forms  
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Formulas (9) and (10) are valid when the inequalities 
cos ϕ

1
 ≠ 0 and cos ϕ

2 
≠ 0 are satisfied. The case in which 

cos ϕ
1 
= 0 and cos ϕ

2
 = 0 corresponds to the condition z = 0 

we considered previously (see formulas (6) and (7)). 
Eliminating the function α(r) from system (9), we obtain  
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where A = cos2ϕ

2
/c

1
. The solution of Eq. (11) takes the 

simplest form in the (μ, η) coordinate system, where  
 

μ = ln 
1 + u
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After substituting (μ, η) for the variables (u, v) Eq. (11) is 
reduced to a form  
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A(μ, η) = D 
ch(μ/2) ch(η/2)

[sh(μ/2) + sh(η/2)]2 
.  

 
Integrating Eq. (13) by the method of characteristics with 
the boundary condition on the beam (μ = 0)  
 
L(μ = 0, η) = L

0
(η) (15) 

 
gives the solution  
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and for the backscattering coefficient  
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A rechange from the variables (μ, η) to the variables (u, ν) 
is performed based on the formulas  
 
u = th(μ/2) ; ν = th(η/2) .     (18) 
 
Let us determine the attenuation coefficient α(μ, η) from 
the first equation of system (9) 
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Substituting the derivative ∂L/∂η given by Eq. (16) into 
Eq. (19), we have finally  
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Formulas (17) and (19) completely define the solution 

of the posed problem which describes the spatial 
distribution of the optical characteristics α(μ, η) and β(μ, η) 
in some region in the form of functional dependence on the 
signals S

1
(μ, η) and S

2
(μ, η) recorded by the two lidars 

which are separated at the distance D.  
4. Conclusion. Thus, as shown in this paper, recording 

of the lidar signals from each point of the volume under 
study from two directions with additional use of the second 
lidar in the laser monitoring system makes it possible to 
reconstruct simultaneously the spatial distribution of the 
attenuation and backscattering coefficients from the 
experimental data without using a priori information about 
the functional dependence between them. The analytical 
solution of the corresponding inverse problem based on 
integrating the system of the two first–order partial 
differential equations has been obtained. In principle the 
problem will be changed slightly if one uses only one lidar 
and, instead of the second lidar, uses a reflecting system 
irradiated by the first lidar. In contrast to the airborne 
tomographic lidar sounding, the proposed technique does 
not require any motion of the lidar relative to the volume 
under study and is based only on angular scanning. The 
main point in processing of the lidar returns according to 
the proposed scheme is the calculation of the logarithmic 
derivatives of these signals with respect to the sounding 
directions for each lidar at arbitrary points of the volume 
under study. Taking into account a discrete nature of the 
real experimental data as well as incorrectness of the 
problem of numerical differentiation it may be expected that 
an implementation of the proposed technique in practice 
will be efficient when using the spline method. A 
subsequent work to be done in this direction will be 
devoted to the problems of construction of the appropriate 
computing algorithms.  
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