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A model of the process of light–induced deformations of large absorbing water 
drops has been constructed. The role of hydrodynamical mechanism as well as of the 
effect of phase explosion of overheated liquid in fragmentation of the particles has been 
analyzed. An experimental data on the dependence of the size of fragments of the drops 
on the rate of the light energy influx into the material of the particle has been 
interpreted.  

 

The liquid absorbing particles exposed to the intense 
laser radiation rapidly change states in their volumes, 
namely, undergo explosive effervescence.1 The 
distribution of the absorbed light energy inside the 
particles significantly affects the effervescence. When the 
radiation is absorbed quasiuniformly, which is realized in 
drops with radii a0  (2αa)

–1, where αa is the absorption 

coefficient of a liquid at the laser radiation wavelength, a 
volume effervescence of the drops with their subsequent 
fragmentation is observed. This regime, which is referred to as 
the uniform phase explosion,1 was studied in sufficient detail 
in Refs. 1–3. For the absorbing particles with large radii 
(a0 > (2αa)

–1) the field of release of the internal energy is 

strongly nonuniform and is characterized by the existence of 
the maxima near the illuminated and shadow surfaces of the 
drop.4 The experiments described in Refs. 5–10 showed that 
the explosion of such particles, as a rule, is a multistage 
process. At first, ejection of the vapor–condensate from the 
droplet surface occurs followed by a deformation of the 
particle and its fragmentation into many small drops, which in 
the case of a prolonged influx of the laser energy are also 
fragmented.  

In this paper, we construct some theoretical models of 
deformation and fragmentation of large water drops by CO2–

laser radiation under conditions of high rates of heating when 
the heat release occurs without equalizing of temperature 
gradients throughout the volumes of the particles. An 
employment of the experimental data is a significant point of 
this approach.  

1. The analysis of the above–mentioned experimental 
data makes it possible to construct the following pattern of 
the deformation of a liquid particle. As a result of heating of 
the near–surface layers of the drop (where the heat release is 
maximum), the conditions for the explosive effervescence of 
the liquid are realized. The ejections of the vapor–droplet 
mixture exert a reactive pressure at the near–surface layers of 
the drop thereby resulting in deformation and motion of the 
drop. In what follows, the fragmentation of the deformed 
particle into many small drops can occur under certain 
conditions.  

Let us consider the formulation of the problem of 
deformation of a liquid particle in the integral form  

 

d
dt (K + Kì + Π) + N = ⌡⌠

S

 p(vn) dS′ ; (1) 

 

and  

Ì0
′  

dvì

dt  = n⌡⌠
S

 p(r)dS′ + Fa . (2) 

 

Equation (1) is the energy balance equation for the 
deformed particle and Eq. (2) is the equation of motion of 

its center of mass. In Eqs. (1) and (2), K = 
1
2⌡⌠
V

 ρ1ν
2dV′ is 

the kinetic energy of the liquid contained in the drop, 

Π = σS is the surface energy, N = 
1
2 η⌡⌠

V

 
⎝
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⎠
⎞∂νi

∂xk
 + 

∂νk
∂xi
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dV′ is 

the rate of viscous dissipation, KM = 
1
2 (M′

0ν
2
M) is the 

kinetic energy of motion of the center of mass, M'0 and vM 

are the mass and the velocity of the drop after ejection of 
the vapor–condensate, V and S are the volume and surface 
area of the deformed drop, v is the velocity of flow, n is the 
external normal to the droplet surface, σ is the coefficient 
of surface tension, p is the field of external pressure at the 
surface of the particle, η is the dynamic viscosity, Fa is the 

aerodynamic droplet drag, ρ1 is the density of liquid, and r 

is the radial distance in the drop.11 
Since the Reynolds number for this problem 

Re = νa0/ν . 1, where ν is the kinematic viscosity of 

liquid, then except for the region of boundary layer with 

the thickness δ g a0/ Re n a0 the flow inside the droplet 

can be considered to be irrotational.11 
In the theory of deformation and fragmentation of 

particles, the perturbed surface shape is often represented in 
the form of ellipsoids.12 Following this approximation we 
can write for the velocity potential Φ (Ref. 11)  
 

Φ = 
1
2⎝
⎛

⎠
⎞x

2

a1
 
da1

dt  + 
y2

a2
 
da2

dt  + 
z

2

a3
 
da3

dt  , 

 

where ai are the semi–axes. The velocity v = ∇
r
Φ and, 

consequently, we succeed in determining all terms, which 
enter into Eq. (1).  

When the droplet deformation has the form of 
spheroid (a1 = a3), using new variables the degree of 

deformation γ = a2 /a1 and the dimensionless time 

τ = Ω0t, (Ω0 = (8σ/ρ1a
3
0)

1/2 is the basic frequency of natural  
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oscillations of the drop), neglecting the viscous dissipation 
Eq. (1) is reduced to a form  
 

d2γ
dτ2

 – 
(γ2 + 2)

3γ(γ2 + 1/2)
 
dγ
dτ + 

135γ8/3

32(γ2 + 1/2)
 
dS
dτ

 = 

 

= 
γ8/3
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1

4πσa0
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where 
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⎛
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⎞2π a1
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π a2
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and 
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⎝⎜
⎛

⎠⎟
⎞2π a1

2 + 2π 
a2

2 γ2

γ2–1
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γ2 – 1
γ
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It is not difficult to show that as ⏐γ – 1⏐ → 0 and with the 
null right side Eq. (3) goes over to an equation for small 
oscillations.  

2. Let us consider the case, in which the droplet 
deformation occurs as a result of the reactive pressure of 
the explosive surface layers. It can be assumed that 
p(τ) ∼ δ(τ – τex), where δ(τ) is the delta function of Dirac 

and τex is the dimensionless time of the start of the explosive 

effervescence,3 because the time of formation and growth of 
the vapor phase in the region of energy release is much less 
than the time of the particle deformation.  

By integrating Eq. (3) over the time and taking into 
account the fact that according to the principle of 
conservation of momentum  
 

⌡⌠
0

∞

 dτ′⌡⌠
S

 p(vn) dS′ = 
Ip
2

2Ì0
′  , 

 

where Ið = ⌡⌠
0

Ìï

(vn)dÌ = ν1Ì1 + ν2 Ì2 is the reactive recoil 

momentum of the ejected vapor and M1, ν1, M2, and ν2 are 

the masses and velocities of the vapor–condensate ejected 
from the illuminated and shadow sides of the droplet 
surface, respectively (Mï = M1 + M2), we obtain  
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Here τ1 = τ – τex, (τex = Ω0tex).  

The kinetic energy of motion of the center of mass of the 
drop can be determined with the help of Eq. (2) and has the 
form  
 

Kì = 
Ì0

′  νì
2

2  = 
2 Ip

2

9Ì0
′  , 

 

where M′
0 = M0 – (M1 + M2) and M0 is the starting mass of 

the drop with radius a0. The initial conditions for Eq. (4) are 

as follows:  

 

γ (τ1 = 0) = γ0 ;    ⎪
⎪( )dγ

dτ τ1=0
 = – 

1
a0

 ×  

 

× 
⎣
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 , (5) 

 

where γ0 = a2
0/a1

0, a2
1 = a0 and a0

1 = 3Ì0
′/(4πρ1a0

2 ). The 

masses of the ejected vapor–condensate M1 and M2 can be 

determined from the solution of the problem of phase 
explosion of the drop1,3 and from the given form of the 
temperature field inside the particle at t = tex. The values 

ν1 and ν2, as shown experimentally in Refs. 5–10 vary in 

the range ∼ 400–600 m/s at high rates of droplet heating. 
The theoretical calculation of the starting stage of gas–
dynamical separation of the products of explosive 
fragmentation of the water drops gives analogous values.1,3 

In the present paper we have made a numerical 
calculation of the dependence of γ(τ) based on Eqs. (4) and 
(5) with different initial conditions. We have considered the 

situations with high rates of heating ((M1 + M2)/Ì0
′  = 0.5, 

0.25, and 0.15 for a0 = 15, 30, and 50 μm) and deformation. 

The calculated results are shown in Fig. 1.  
 

 
 

FIG. 1 The time dependence of the reciprocal degree of 
deformation of the water drops with different starting radii: 
a0 = 15 (1 and 1′), 30 (2 and 2′), and 50 μm (3 and 3′) at 

Jp = 2⋅109 (1–3) and 5⋅108 K/s (1′–3′).  
 
3. When the density of the radiation energy w was 

close in value to the threshold of effervescence of the liquid 
wex, we have experimentally found another deformation 

pattern of large drops,14 when at first the particle extended 
in the direction of propagation of radiation owing to a 
formation and growth of vapor regions near the surface, 
which was followed by the relaxation oscillations of the 
particle.  

Let us consider the model of such deformations of the 
droplet with its subsequent relaxation based on the 
following ideas. During the time, which is called 
deformation time td, after the start of the laser action, 

vapor bubbles arise near the illuminated and shadow sides 
which distort the droplet surface. The drop acquires the 
shape of a spheroid with the principal axis, which coincides  
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with the direction of laser action. In what follows, we 
assume that the bubbles do not affect the droplet dynamics, 
i. e., there is no motion of the center of mass.  

Mathematically, a formulation of the problem, which 
corresponds to the model, is reduced to Eq. (3) with the 
null right side and the initial conditions prescribed at time 
τ = τd  (τd = Ω0td):  

 

γ(τd) = γ0; ( )dγ/dτ ⎥ 
τ=τd

 = 0 .  

 

The values of the initial deformation can be determined 
from Eq. (4), where τ1 = τ – τd, KM = 0, and ν1 and ν2 are 

the velocities of motion of the surfaces of the illuminated and 
shadow hemispheres of the drop. For large drops at low rates 
of energy influx when a small number of bubbles is formed, 
the velocity of motion of the liquid surface in the case, in 
which the bubble rise to the surface, can be determined from 
the solution of the problem of the dynamics of the bubble, 
which grows in the droplet center. The solution of this 
problem is well known.15 Thus, for determination of γ0, we 

succeed in writing down the following equation:  
 

⎝
⎜
⎛

⎠
⎟
⎞

1 + 
γ0
2

γ0
2 – 1

 arcsin 
γ0
2 – 1

γ0
γ0
–2/3(γ0 – 1)

1/3
 = 

 

= 
a0 ρ2

3σ  (ν1
2 + ν2

2) 
 

where ρ2 is the vapor density.  

The results of numerical solution of the problem of 
the relaxation oscillations are shown in Fig. 2, where the 
values of the relative deviation of the oscillation 
frequency (Ω – Ω0)/Ω0 from the frequency of natural 

oscillation Ω0 are plotted on the Y axis as functions of 

the initial radius of the particles. The experimental data 
taken from Ref. 14 are shown as well. As can be seen 
from the figure, the degree of nonlinearity of the 
oscillations increases as the size of the particles decreases. 
The quantitative difference of the experimental data from 
the calculated results in the region of large particles 
indicates that the modes of oscillations, whose frequency 
deviated from the frequency of the fundamental mode, 
were recorded in the experiments. 

 

 
 

FIG. 2. The relative deviation of the frequency of 
deformation oscillations of the drop vs its size according to 
the data of Ref. 14. The solid curve denotes the theoretical 
calculation.  

4. The above–considered models of the interaction 
between the intense laser radiation and the absorbing large 
drops, indicate that, under certain conditions, significant 
deformations of particles can occur.  

When considering the physical mechanisms of 
fragmentation of such droplets, one can select two 
fundamental processes, which cause their fragmentation, i.e., 
the hydrodynamical instability and phase explosion. In the 
first case, the drop, whose volume remains unheated by the 
radiation, is fragmented under the impact on the front surfaces 
produced by the vapor–condensate separating from the regions 
of energy release, and the reason for this is the evolution of 
the surface perturbations at high rates of deformation. 
According to the experiments of Ref. 16, in the case of 
hydrodynamical instability, the fragmentation of the drops 
into many small drops occurs at γ = γcr g 0.1. In the second 

case, the explosive effervescence of the droplet, which has not 
yet reached the size of the critical deformation γcr, is 

responsible for the fragmentation. Here, the increase in the 
volume of overheated liquid, when the droplet oblates in the 
direction perpendicular to the direction of propagation of laser 
radiation, turns out to be important.  

In what follows, let us consider the characteristic times 
of the process, i.e., the time of effervescence of a homogeneous 
layer tex (see Ref. 3), the time of reaching the critical 

deformation tcr, after which the fragmentation due to the 

hydrodynamical instability occurs (γcr = γ(tcr)), and finally, 

the time of reaching an absorption uniformity tun when the 

transverse size of the particle becomes comparable with α–1
t .  

The question about which of these two processes of 
fragmentation of the deformed particle – the hydrodynamical 
instability or explosive effervescence – will predominate, is 
determined by the ratio of the deformation rate and the 
heating rate, which, in their turn, depend on the particle size 
and the energy parameters of the radiation. The dependence of 
tcr and tun, calculated based on Eq. (4) on the particle size for 

different values of the parameter Jp = αïωp /ρ1Cptp 

characterizing the rate of heating where ω is the total energy 
density in the radiation pulse with the width tp, and Cp is the 

isobaric heat capacity of liquid, are shown in Fig. 3. The data 
analysis shows that, when the rate of energy influx Jp and the 

droplet size a0 are different, various fragmentation regimes can 

occur. 
 

 
FIG. 3. The characteristic times tcr (1), tex (2), and tun (3) 

of the process of fragmentation of the drop vs its size at 
Jp = 5⋅109 (1–3) and 2⋅109 K/s (1′–3′).  
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At tcr n tex (10 μm  a0  25 μm), the hydrodynamical 

fragmentation regime prevails. Here, the rate of deformation 
of the drop is much higher then the rate of the droplet heating 
up to the temperature of the explosive effervescence. For the 
drop with a0  25 μm, when tex n tcr and tun, a fragmentation 

of the front layers as a result of their explosive effervescence is 
typical of the process. In the intermediate region of the 
particle size (a0 g 25 μm) when the rates of deformation and 

heating are close in value, the fragmentation mechanisms 
compete (tcr ∼ tex). If the condition tun n tcr, and tex is 

satisfied, the transverse size of the droplet by the time of its 
fragmentation becomes comparable with the absorption length, 
as a result, the entire volume of the particle already becomes 
substantially overheated and its explosive effervescence can 
occur. The small particles "fragments" formed due to the 
fragmentation have an elevated temperature and can 
repeatedly effervescence virtually without any additional 
energy consumption.  

Let us consider in more detail the fragmentation of the 
particle in the case of hydrodynamical instability. In this case 
it is very important to establish the size of the small drops – 
"fragments", formed due to hydrodynamical fragmentation as 
well as the dependence of particle size on the energy of 
heating radiation and the size of the initial drops. Let us 

estimate the effective size of the fragments a
–

k using the 

balance relation for the energy. It is obvious that the total 
energy W0 stored by the deformed particle with an account of 

the outflow of those fraction of the energy Km which was 

spent on light–reactive motion of the center of mass in the 
course of fragmentation will be transformed into the kinetic 
energy KN and surface energy ΠN of the fragments Nk 
 

W0 = ⌡⌠
0

t

 dt′⌡⌠
S

 (vn)p dS′ + Π (t = 0) – KÌ = KN + ΠN. 

 

We employ the approximation of monodisperse fragments 
for the estimates  
 

KN = 
2π
3  ρ1 Nk a

–
k
3 ν

–
k
2;   ÏN = 4πσak

2
⋅Nk , 

 

where ν
–

k is the mean velocity of motion of the fragments. It 

can be estimated from the relation ν
–

k g (da/dt)⏐γ=. The 

calculations showed that in the interval of the deformation 
rates under consideration KN n ΠN. Taking this into account 

as well as the fact that Nk = 3Ì0
′/4πρ1 a

–
k
3, we obtain for the 

degree of fragmentation of the drop d = a0/a
–

k 
 

d = 
a0 ρ1W0

3Ì0
′  σ

 . (6) 

 

It follows from Eq. (6) that the degree of fragmentation d 
is proportional to the impact energy given to the drop, 
which in its turn depends on the rate of heating Jp. Since 

both the numerator and denominator of Eq. (6) are 

proportional to a
3
0, the dependence d(a0) is weak (in 

contrast to the case of uniform explosion, when d ∼ a0.
3 

The result of calculation of d(Jp) based on Eq. (6) is 

shown in Fig. 4 (solid line). It can be seen from the figure 
that the degree of fragmentation of the drops increases as the  

rate of energy influx increases. This fact was also established 
in the experimentally in Ref. 7, the results are shown in 
Fig. 4. Since a cw CO2 laser was used in Ref. 7, in this case 

Jp = α0I0/ρ1Cp, where I0is the radiation intensity.  
 

 
 

FIG. 4. The degree of fragmentation of the drops with 
a0 = 10 (1), 15 (2), 20 (3), and 25 μm (4) vs the rate of 

heating according to Ref. 7. The solid curve denotes the 
result of theoretical calculation.  
 

The analysis of the data shown in Fig. 4 indicates that 
at low rates of the influx of the light energy, the fragments 
have large size, which provides, when they are further 
exposed to pulse of laser light and the energy density in the 
pulse is quite high, for their effective heating up to the 
explosive effervescence. The experimental investigations 
described in Ref. 14 also indicate such a double explosion of 
the large drops (a0 ≤ 23 μm).  

For the large particles a0 . α
–1

α  when the unequality 

tex n tcr and tun is valid, the regime of a layer–by–layer 

explosion can occur. In this case one can neglect the effect 
of deformation, and the fragmentation can be treated as a 
sequence of the phases of heating, effervescence, and 
separation of the absorbing surface layer. An experiment 
with such a "pulsating" explosion was described in Ref. 5.  
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