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A technique of estimating the regularization parameter in solving the inverse 
problems of microwave optics based on maximization of the ratio of entropies of the 
power spectra of the residual noise and information-bearing process extracted from the 
input signal is considered. An example illustrating the applicability of the proposed 
technique is given. 

 
One of the central questions of regularization of inverse 

problems of microwave optics consists in determining the 
principle for assigning the regularization parameter.1–3 The 
Tikhonov principle of the discrepancy has been now widely 
used according to which the regularization parameter α is 
determined from the condition that the residual discrepancy is 
consistent with the a priori known error in the initial data.1 
In the present paper the value of α is proposed to determine 
from the condition of optimizing a certain entropy functional 
when the noise level is unknown a priori. 

Many problems of microwave optics may be reduced to 
a linear equation  

 

Ax = y , (1)  
 

where y = {yi} is the M–dimensional vector of the 

measured variables and x = {xi} is the N–dimensional 

vector of the unknown parameters, A is the M×N matrix, 
and M × N. To solve equation (1), the Tikhonov 
regularizing functional is introduced,1 whose minimization 
leads to a standard equation: 
 
(ATA + α)xα = ATy. (2)  

 
Here x = xα is the regularized solution, α is the 

regularization parameter, and "T" denotes the transposition 
operation. It can be shown4 that the solution of the 
standard equation (2) coincides with the pseudosolution 
xα = B+y of the equation Bx = y, where B = A + α(A+)T 

and B+ denotes a pseudoinverse matrix.5,6 Then the 
approximate solution xα differs from the expected ideal 

solution x
0
 by the value6  

 
Δx = xα – x

0 
= B+[Δy – (Bx

0 
– y

0
)] , 

 
where Δy is the deviation of the initially measured data 
from the ideal and exact y

0
 = Ax

0
. It follows then for the 

relative deviation norm d
x = ⎢⎢Δx⎢⎢/⎢⎢x

0
⎢⎢ that dx ≤ ε(α) 

cond A, where cond A = ⎢⎢A+⎢⎢⋅⎢⎢A⎢⎢ is the conditional 
number of the matrix A and  
 

ε(a) = 
⎢⎢B+[Δy – (Bx

0 
–

 
y

0
)]⎢⎢

⎢⎢A+⎢⎢⋅⎢⎢y
0
⎢⎢

 (3) 

 
 

is the standard deviation of the initial data which might 
decrease in comparison with the initial standard deviation 
for α = 0, namely, ε(α) < ε(0). Regularization is the more 
successful, the more accurately the discrepancy of the 
change of the operator (Bx

0
 – y

0
) in Eq. (3) compensates 

for the deviation of the initial data Δy. The regularization 
parameter α plays the role of the adjustable parameter. The 
value α = α

0
 is optimal if ε(α) is minimal. In general, the 

value α
0
 will obviously depend on the deviation level Δy, on 

the form of the solution x
0
, and on the matrix A. When α is 

determined based on the discrepancy, the level of the 
discrepancy δ = ⎢⎢Ax

0
 – y⎢⎢ is made consistent with the 

level of deviation of the initial data ⎢⎢Δy⎢⎢ which is assumed 
to be well known. The value α = αδ determined from this 

condition disregards the form of the exact solution x
0
 and 

the form of the operator A and is, therefore, not optimal.  
When the deviation level ⎢⎢Δy⎢⎢ is unknown, the 

determination based on the discrepancy becomes inapplicable, 
and any supplemental information, for example, about the 
shape of the noise spectrum is required. Determination of the 
regularization parameter α and the corresponding solution 
obtained with it are equivalent to the separation of the 
information–bearing process yα = Axα and noise Δyα = y – y 

from the initial signal y. The criterion of selection of the value 
of α proposed here is based on the assumption that the power 
spectrum of noise Δy is much more uniform than the energy 
spectrum of the information–bearing process y

0
. The entropy 

functional γ(α) = H[Δyα]/H[yα] can be used for the measure 

of contrast between these spectra. Here H(z) = – ∑
j

 pj ln pj is 

the average entropy of the normalized power spectrum 

pj

⎝
⎛

⎠
⎞∑

j

pj = 1   where z = Δyα for noise and z = yα for the 

signal. The requirement that the functional γ(α) reaches its 
maximum provides the value α = αγ which is optimal in the 

sense of the principle of the maximum entropy (PME). We 
underscore here that although the PME is somewhat similar to 
the well-known method of maximum entropy, which is widely 
used to estimate the power spectra of signals based on the 
autoregression models,7 it still differs from it.  

To find the pseudoinverse matrix and the 
pseudosolution, the singular expansion of the matrix  



 

A = UTCV is convenient, where U and V are the orthogonal 
matrices, C is a quasidiagonal matrix of coefficients c

i 

(i = 1, ..., N) called singular numbers.4,5 The pseudoinverse 
matrix B+ is calculated in the form of a product B+ = VTSU, 
in which the coefficients of the quasidiagonal matrix S are the 

numbers s
i = [ci + α/ci]

–1. For α = 0, these numbers are 

equal to s
i = ci and B+ = A+ while selection of α ≠ 0 means 

perturbation of the singular numbers of the matrix A. To 
calculate the power spectra, certain standard techniques may 
be used, including the algorithms of the fast Fourier 
transform, the Walsh transform, etc. 

 

 
 
FIG. 1. Actual conditionality of the model inverse 
problem after regularization (curves 1–3), and the 
regularization parameter (curve 4) vs the error in the 
initial data.  

 
We have chosen a discrete analog of the Fredholm 

integral equation of the first kind of the convolution type 
(see Ref. 2, p. 109) for our test example which usually 
serves to test various regularizing procedures. For M = 41 
and N = 13 the conditional number was taken to be 
cond A = maxci/minci = 285. Without regularization, 

(α = 0) the relative standard deviation of the solution 
exceeded 100% given that the noise level was 
ε = ⎢⎢Δy⎢⎢/⎢⎢y

0
⎢⎢ ≥ 10–2 while regularization (α ≠ 0) resulted 

in the relative standard deviation less than 9%. Figure 1 
shows the dependence of the actual conditionality of the 
problem K = d

x/ε on the noise level ε when α was optimal:  

α = α
0
 (curve 1), when α was determined based on the 

discrepancy: α = αδ (curve 3), and when α was determined 

based on the technique proposed in this paper: α = αγ 

(curve 2).  
It can be seen from Fig. 1 that despite the lack of an 

a priori data on the noise level, the selection α = αγ 

provides the accuracy not worse than α = αδ based on the 

discrepancy; moreover, it is even closer to the optimal value 
α = α0. Curve 4 shows the obtained dependence α = αγ on 

the noise level and may be approximated by the formula 

αγ = [6⋅10–3ε]1/2. 

The presented test example testifies to the efficiency of 
the technique for estimating the regularization parameter. The 
applicability of this technique to inverse problems has been 
tested by solving an improperly posed inverse problem of 
atmospheric refraction.6 The entropy functional proposed here 
was successfully used to separate the Doppler and noise 
components of the actual spectrum of the signal obtained in 
urban surroundings and to determine the velocity of the 
relative motion of the transmitter. Optimization of such a 
functional may be useful in the adaptive methods of image 
processing.  
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