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An optimal algorithm is synthesized to control the adaptive optical systems, in 
which the wavefront phase distortions are estimated based on multichannel phase 
modulation of the received signal. The algorithm takes into account both the 
atmospheric background noise and the photodetection noise. The efficiency of optimal 
and suboptimal algorithms is compared under conditions of the turbulent atmosphere.  

 
It is well known that the adaptive optical systems 

(AOS's) have large possibilities of compensating for 
distortions induced by the turbulent atmosphere in the 
optical devices implemented for laser communication, 
detection and ranging, and navigation.1 Along with the 
AOS's operating on the basis of the phase conjugation (PC) 
principle, considerable attention is devoted to the systems 
with multichannel phase modulation2 (MPM) in which the 
data on the wavefront phase distortions are derived from the 
received optical signal that was phase–modulated at a stage 
of emission or reception of the optical signal. From the 
viewpoint of statistical optimization of information systems 
and of the theory of statistical solutions,3,4 the AOS and 
the MPM devices can be treated as the systems with 
partially specified structure, since the idea of phase 
modulation is fundamental for them. When implementing 
the algorithm for measuring the distortions in the AOS's, it 
is possible to use one of the two ways: either to use a 
standard photodetector or to synthesize this unit of the 
system as well. Both variants of optimization are considered 
in the present paper.  

 
1. MODEL OF A RECEIVED SIGNAL  

 
We shall now investigate the pulsed multistep regime of 

operation of the AOS. Let us consider the arbitrary mth 
(m = 1, 2, . . . ) sensing step. The field reflected from a point 
target with coordinates (zm, θm) can be written in the form  

 

(Ym(r, t) = Re u(t – tm)Xm(r, t)Vm(r) + n(r, t) , 
 

r ∈ Xa, (m – 1)T0 ≤ t ≤ mT0 , (1)  
 

where Zm is the distance to the target, θm are the angular 

coordinates of the target, Ωa is the area of the receiving 

aperture, T0 is the sensing period, u(t) is the function 

describing the sensing pulse shape, tm = (m – 1) T0 + 2zm/c 

is the moment of signal reception. The functions 
Xm (r, t) = exp {–iωt + ikr2/2zm – ikθmr} and 

Vm(r) = Eexp{iϕm(r)} describe the run–on of the phase 

accumulated along the propagation path from the target to 
the receiving aperture through a homogeneous medium and 
the random wavefront phase distortions caused by the 
turbulent atmosphere, in addition, in the phase 
approximation Em is the real deterministic amplitude of the  

field while ϕ(r) = ϕ(0, r; zm, θm; tm) is the random run–on 

of the phase, k = 2π/λ is the wave number, λ is the 
wavelength, ω = k/c is the carrier frequency of the desired 
signal, and n(r, t) is the background noise, which is usually 
a Gaussian process with a uniform spectral density N0.  

In order to measure the wavefront phase distortions of 
the signal at the receiving aperture Ωa collocated with the 

transmitting aperture, the signal was phase–modulated with 
the frequencies ωj (j = 1, ...,N) within the corresponding 

areas (subapertures) Ωj ⊂ Ωa. The received field was then 

focused onto the photodetector (PD). For the "point" PD, 
whose sensitivity maximum was located at the point with 
the coordinates  ξ = – dmθm, where dm = zmF/(zm – F) (F 

is the focal length of the receiving optics), the condition 

n = SaS/λ2d2
m < 1 is satisfied, where Sa is the area of the 

receiving aperture and S is the area of the sensitive surface 
of the PD. At the same time, in accordance with Eq. (1), 
the field at the PD takes the form  
 

Ym(ξ, t) = Re EmXm(ξ, t) ∑

j=1
N  

1
Δ 
⌡⌠
Ωj

 exp{i[a sin ωj t + ϕm(r)]}d2r + 

 

+ Re 
1

iλdm
∑

j=1
N ⌡⌠

Xj

 n(r, t)exp{ia sinωj t + 

 

+ iκdm – 
iκ
2F r2 + 

⎭
⎬
⎫iκ

2dm
⏐r – ξ⏐2 d2r , (2) 

 

where Xm(ξ, t) = 

Δ
iλdm

 u(t – tm)exp{–iωt + ikdm + ikξ2/2dm},  

Δ = Sa/N is the area of the subaperture Ωj(j = 1, ...,N), the 

function asinωj t describes phase modulation within the jth 

subaperture, with amplitude a and frequency ωj.  

 
2. OPTIMAL POSTDETECTOR SIGNAL PROCESSING  

 
The PD output signal, from which the information on 

phase distortions is derived, has the form  
 

im(t) = ∑
k=1

Km

δ(t –tkm), (3)  
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where tkm and Km are the random moments of photoelectron 

emission and the number of electrons recorded during the mth 
sensing step. In most of the cases,5 when the experimental 
phase ϕm(r) was fixed, the PD output signal obeyed the 

Poisson distribution.  
The statistical approach allows one to implement the 

processing algorithm in the form of a tracking system of 
automatic control. Indeed, we can write the formula for 
logarithm of the functional of the likelihood ratio during the 
mth sensing step in the form  

 

Lm[t, νsm(t)] = ⌡⌠
(m–1)T0

t

 l [τ, νsm(τ)] dτ,  

 

(m – 1)T0 ≤ t ≤ mT0. (4) 
 

where l[t, νsm(t)] = im(t) ln[1 + νsm(t)/νn] – νsm(t), νsm(t) 

and νn are the signal and noise components of the intensity 

of the Poisson flux of electrons (3). Taking into account 
Eq. (2) for the field incident on the PD, we have  
 

νsm(t) =μm(t)⎢
1
N  ∑

j=1

N

 ⎢
1
Δ Bj 

2

, (5) 

 

Bj = ⌡⌠
Ωj

 

exp{i[asinωj t + εjm(t)]}d2r ,  

 

where μm(t) = η⎢ ⎢Em

2
San⎢ ⎢u(t – tm)

2
/2η–ω is the signal 

component of the intensity of flux (3) when the radiation 
propagates through a homogeneous medium, η is the 

quantum efficiency of the PD, η–ω is the quantum of energy 
at the carrier frequency ω, εjm(r,t) = ϕm(r) – jm(t) is the 

error signal representing the difference between the phase 
distribution ϕm(r) measured within the subaperture r ∈ Ωj 

and the control signal jm(t) (the average established position 

of the jth subaperture) during the mth sensing step. The 
intensity of noise component of flux is apparently equal to 

 

νn = ηNon/η–ω + νd , (6) 
 

where νd is the intensity of the flux of the PD dark electrons.  

When the error signals in the channels of the tracking 
AOS are small for the errors averaged over the subapertures 

εjm(t) = 
1
Δ ⌡⌠

Ωj

εjm(r, t)d2r , the following system of differential 

equations, which follows from Eqs. (4) and (5) is valid:  
 

dεjm(t)

dt  = ∑
k=1

N

  Cjkm(t)Bkm(t)), (7) 

 

j = 1, ..., N,  (m – 1)T0 ≤ t ≤ mT0 
 

Bkm(t) = 
∂

∂εkm
 l[t, νsm(t)] =  

 

= – 
2μm(t)

N2  [im(t)/(νsm(t) + νn) – 1] × 

× ∑
p=1

N

 [a(sinωkt – sinωpt) + εkm(t) – εpm(t)] ; (8) 

 

where Cjkm(t) are the coefficients of the matrix inverse the 

matrix  
 

Ajkm(t) = – 
∂2

∂εjm∂εkm
 Lm[t, νsm(t)] = Ajkm((m – 1)T0) + 

 

+ 
4

N4 ⌡⌠
(m – 1)T0

t

  μ
2
m(τ)im(τ)/(νsm(τ) + νn)

2 × 

 

× ∑
p, q=1

N

 [a(sinωjτ – sinωpτ) + εjm(τ) – εpm(τ)] × 

 

× [a(sin ωkτ – sin ωqτ) + εkm(τ) – εqm(τ)]dτ + 
 

+ 
2

N2 ⌡⌠
(m – 1)T0

t

 μm(τ)[im(τ)/(νsm(τ) + νn) – 1] dτ(Nδjk – 1) . (9) 

 

Equations (7)–(9) describe the optimal algorithm of 
control. However, this algorithm requires the inversion of 
matrix Ajkm(t) (j, k = 1, ..., N) during each sensing step. 

To overcome this difficulty, Eq. (9) may be averaged 
preliminariely over the ensemble of realization of the shot 
photodetection noise and the matrix coefficients Ajk(t) may 

be taken not at the point corresponding to the estimate of 
maximum likelihood jm(t) (j = 1, ..., N), but rather at the 

point where these parameters reach their actual values, 

namely, jm(t) = 
1
Δ⌡⌠
Ωj

ϕm(r)d2r. Formula (9) then acquires the 

form of the Fisher information matrix 3 
 

Ajkm(t)  = Ajkm((m – 1)T0)  + 

 

+ 
2a2

N3 ⌡⌠
(m – 1)T0

 t

μm(τ)qm(τ)/(1 + qm(τ))dτ (Nδik – 1), 

 

j, k = 1, ..., N,  (m – 1)T0 ≤ t ≤ mT0, (10) 
 

where qm(t) = μm(t)/νn is the signal–to–noise ratio of 

radiation propagating through a homogeneous medium 
during the mth sensing step. A horizontal bar denotes 
averaging over the ensemble of the shot photodetection 
noise of the receiver.  

However, the Fisher matrix given by Eq. (10) is 
degenerate. The rank of the matrix is a unity smaller than the 
matrix dimensions, so that the system of N equations (7) 
includes the equation that can be expressed in the form of 
linear combination of the rest of the linearly independent 
equations. These linearly independent equations determine 
N – 1 unknown quantities in the form of the linear functions 
of a single unknown quantity that may be chosen arbitrarily. 
This situation reflects the fact that phase measurements 
actually yield only phase differences rather than the absolute 
values of the phases. Let us take the phase within the Nth 
subaperture as the reference phase for all of the rest of the 
phases. If we set εNm(t) = 0 and neglect the Nth differential  
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equation of system (7) we obtain the control algorithm in the 
following form: 

 

dεjm(t)

dt  = ∑
k=1

N–1

Cjkm(t)Bkm(t) , 

 

j = 1, ...,N – 1, (m – 1)T0 ≤ t ≤ mT0, (11) 
 

The explicit analytical form for the matrix of 
coefficients Cjkm(t) can be found in two limiting cases. 

Indeed, if the estimated wavefront phase distortions remain 
unchanged over the period of observation, that is 
ϕm(r) = ϕ(r) for any m, then, obviously  

 

Cjkm(t) g k0m(t)(1 + δjk), (12) 
 

where  
 

k0m(t) = N2/

⎝
⎜
⎜
⎛

2a2

⎣
⎢
⎢
⎡

∑
l=1

m–1

⌡
⌠

(l–1)T0

lT0

 
μl(τ)ql(τ)

(1 + ql(τ))
dτ + 

 

+ 

⎠
⎟
⎞

⎦
⎥
⎤

⌡⎮
⎮⌠

(m – 1)T0

t

 
μm(τ)qm(τ)

(1 + qm(τ)) 

 

dτ

 

. 

 

The opposite situation happens more often in practice, in 
particular, when we observe rapidly moving targets, for which 
the phase distortions during the successive sensing steps are 
uncorrelated. In this case the information on the wavefront 
phase (WFP) distortions is not available at the start of the 
mth successive step of reception of the sensing signal, that is, 

Ajkm((m – 1)T0)  = 0. The matrix of coefficients Cjkm(t) can 

than be determined once again from Eq. (12) provided that  
 

k0m(t) = N2/

⎝
⎜
⎜
⎛

⎠
⎟
⎟
⎞

2a2 

⌡
⌠

(m–1)T0

t

 
μm(τ)qm(τ)

(1 + qm(τ))dτ  . (13) 

 

By substituting Eq. (13) into Eq. (11), we obtain the 
control algorithm in a simpler form  

 

dεjm(t)

dt  = μm(τ)N/

⎝
⎜
⎜
⎛

⎠
⎟
⎟
⎞

a2

⌡
⌠

(m–1)T0

t

 
μm(τ)qm(τ)

(1 + qm(τ))dτ  × 

 

× 
1 – im(t)

νsm(t) + νn
 [a(sinωj t – sinωN t) + εim(t)]  

 

j = 1, ...,N – 1, (m – 1)T0 ≤ t ≤ mT0 . (14) 
 

It follows from Eq. (14) that the N–channel control 
system has transformed into a system with N – 1 
independent channels plus a reference channel. Therefore, 
the algorithm described by Eqs. (14) can be implemented 
using the simplest analog devices.  

The aperture averaged variance of the residual error of 
compensation for the WFP distortions taken at the moment of  

emission of the signal during the current sensing step may be 
conveniently chosen as the accuracy characteristic of the AOS: 

 

Dm =
1
N∑

j=1

N
1
Δ ⌡⌠

Ωj

 

< [Q – 
1
N∑

k=1

N
1
Δ Z]2 >d2r, 

 

Q = δj(r, mT0), Z = ⌡⌠
Ωk

 
δk(r1, mT0)d

2r1 , (15)  

 

where δj(r, mT0) = ϕ(r, mT0) – jm(mT0) is the error of 

compensation within the jth subaperture r ∈ Ωj at the 

moment of successive sensing mT0, and the angular brackets 

denote an averaging over the ensemble of realizations of the 
WFP of the derived signal. It is obvious that the error 
δj(r, mT0) can be represented in the form  

 

δj(r, mT0) = ϕ(r, mT0) – jm+ εjm(mT0) , 

where ϕjm = 
1
Δ ⌡⌠

Ωj

 
ϕm(r)d2r is the phase of the signal averaged 

over the jth subaperture. As follows from the form of control 
algorithm (14), the mean control error is equal to zero:  

εjm(t)  = 0, j = 1, ...,N. As for the correlation matrix of 

errors < εjm(mT0) εkm(mT0) >, j = 1, ...,N – 1, k = 1, ...,N – 1, 

it can be determined easily on the basis of the Kramer–Rao 
theorem3 
 

< εjm(mT0) εkm(mT0) > = Cjkm(mT0) , 

 

j = 1, ..., N – 1, k = 1, ..., N – 1 (16) 
 

For this reason when approximating the structure function 
of WFP by the function by Dϕ(r) = 2(⏐r⏐/ρc)

5/3, where ρc 

is the coherence radius of the desired received signal, 
accepting the hypothesis of frozen atmospheric turbulence, 
and assuming that the time delay of the sensing signal Δtm 

(relative to the moment of signal reception) is smaller than 
the coherence time of the received signal τc, we shall have  

 

Dm g (N – 1)k0m(mT0)/N + Γ(11/6)(NB/N)5/6 + 
 

25
18 Γ(5/6)(Δtm/τc)

2(N1/6 – 1)/N
1/6
B . (17) 

 

where Γ(x) = ⌡⌠
0

∞

 ε–ttx–1 dt — is the gamma function, 

NB = Saπ ρc

2
 is the number of coherent "spots" of the signal field 

within the receiving aperture, Δtm = mT0 – tm = T0 – 2zm/c; 

τc = ρc/⏐v⊥⏐, and v
⊥
 is the velocity of the transverse (relative 

to the direction of beam propagation) movement of the 
refractive index inhomogeneities in the turbulent atmosphere. 

As follows from Eq. (17), the variance of 
compensation errors includes three components: noise, 
"dynamic", and extrapolation errors. The latter results from 
the extrapolation of the phase front measured at the moment 
tm of signal reception to the moment of sensing mT0. When 

the wavefront phase distortions during the successive  
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sensing steps are uncorrelated and sensing pulse shape is 
close to rectangular, the noise component has the form  

 

Dnm g (1 + qm)N(N – 1)/ 2a2qm K smn, (18) 

 

where  
 

K
−

sm = ⌡⌠
(m–1)T0

mT0

 μm(t)dt = η⏐Em⏐
2SaTeff/2η–ω 

 

is the average number of photoelectrons recorded by the 

detector during the mth step, Teff = ⌡⌠
(m–1)T0

mT0

 ⏐u(t – tm)⏐2dt is 

the effective duration of the received pulse, qm = n K sm/ n n 

is the signal–to–noise ratio, and n n = νnTeff is the 

average number of noise electrons recorded during the 
period of reception of the signal pulse. Thus, the noise 
component of error is proportional to the squared number of 
channels in the receiving device N (when N is sufficiently 
large), since after detection the signals in the channels are 
added incoherently. It is natural that the error increases as 
the signal–to–noise ratio qm decreases, while for fixed qm it 

increases as the signal "energetics" K sm decreases (when 

the effect of the photodetection noise increases). Reducing 
the degree of signal modulation a makes distinguishing 
between the modulated signals in the detector more difficult 
and, consequently, increases the error.  

The "dynamic" component of error Γ(11/6)(Ns/N)5/6 

results from the finite size of individual subapertures in 
comparison with the size of coherent "spot" of the 
received field and is determined by the number of such 
spots within each subaperture. The extrapolation error  
25
18 Γ(5/6)(Δtmτc)

2(N1/6 – 1)/Ns 

1/6
 depends but weakly on the 

"rate" of the WFP change within the aperture and is mainly 
determined by the rate at which the realizations of the 
phase front change within the characteristic size of the 
coherent "spot" of the signal. It is natural that the noise 
and the extrapolated components of error increase for larger 
number of channels N (when the aperture size is fixed) 
while the "dynamic" component simultaneously decreases. It 
is obvious that there exists the optimal number of channels 
of the AOS, which can be determined by minimizing 
Eq. (17). Formula (17) derived for the variance of error of 
compensation makes it also possible to calculate the Strehl 
factor Stm during the arbitrary sensing step. Indeed, in 

accordance with Ref. 6, we have  
 

Stm g exp (– Dm) + (1 – exp(– Dm/2)2/[1 + 

 
+ Np(1 – exp(– Dm/2))] . (19) 

 
It is interesting to compare the efficiency of the 

synthesized algorithm with that of the scheme with one 
synchronous detector and corresponding filter in each 
channel. This scheme is widely used in practice (see, for 
example, Ref. 7). The signal from the filter output is used 
directly to control and to move the controllable subaperture 
in each channel. It is evident that different algorithms may 
lead only to the change in the noise component of error. We 
will now compare these components for a simple case when 

the WFP of the signal remains unchanged over the period of 
observation ϕm(r) = ϕ(r), and the sounding pulses are short 

enough to control the subapertures during the time intervals 
between the signal pulses. Then the control signal for the 
jth subaperture is written in the form  

 

jm = jm–1 + γm ⋅ ⌡⌠
(m–1)T0

mT0

 im(t)sinωj tdt, j = 1, ... , N, (20) 

 

where γm is the coefficient, which determines the steepness 

of the discrimination characteristic of the measuring device,8 
im(t) is the flux of photoelectrons from the output of the 

PD determined by Eq. (3).  
 

When we control the system according to Eq. (20), the 
compensation error is equal to  

 

εjm = ϕj – 
∧
ϕjm = εjm–1 – Pm[εp, p = 1, ..., N] + ξjm ,  (21) 

 

where Pm[εp, p = 1, ... , N] = γm⋅ ⌡⌠
(m–1)T0

mT0

 im(t) sin ωj tdt and 

 

ξjm = – γm⋅ ⌡⌠
(m–1)T0

mT0

  [im(t) – im(t) ]sinωj tdt  

 

are the slowly and last varying components of the error of 
the tracking measuring device. An averaging was carried out 
over the ensemble of photodetection noise of the given 
sensing step. According to Eq. (5), the slowly varying 
component may be written in the form  

 

Pm[εp, p = 1, ..., N] = εjm–1 – 
1
N∑

p=1

N

εpm–1

 
 . (22) 

 

The steepness of the discrimination characteristic is 

equal to γm = – N/an K sm , while the correlation matrix 

of the fast varying components of error signal of controlling 
N subapertures has the simple form  

 

kjkm = ξjmξkm
°°°°  = (1 + qm)N2δjk/2 a2nqm K sm , 

 

j = 1, ..., N, k = 1, ..., N . (23) 
 

Taking Eq. (22) into account, we have  
 

εjm = 
1
N ∑

p=1

N

 εpm–1 + ξjm, j = 1, ..., N,  

 

instead of Eq. (21), therefore, the noise component of the 
variance of compensation error during the mth sensing step 
exactly coincides with the component of the synthesized 
algorithm given by Eq. (18).  

The latter result requires a physical explanation. There 
are N – 1 controllable subapertures in the synthesized 
algorithm (one subaperture is immovable and the phase 
measured within it is used as the reference phase), and N 
such subapertures in the scheme under study, therefore, the 
variance of the noise error of the synthesized algorithm must 
be smaller. However, in the case examined the error of the 
synthesized algorithm is formed in the following way:  
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εjm – εNm = 
1
N ∑

p=1

N
 
εpm–1 + εjm –  

 

– 

⎝
⎜
⎛

⎠
⎟
⎞

1
N ∑

p=1

N
 
εpm–1 + ξNm  = ξjm – ξNm, j = 1 ,..., N – 1 . 

 
The correlation matrix of this error is equal to  
 

kjkm = (εjm – εNm)(εkm – εNm)  = k0m(1 + δjk) , (24) 

 

where k0m = (1 + qm)N2/(2a2qmn K sm), from which it 

follows that the diagonal coefficients of the error matrix of 
the synthesized algorithm are twice as many as the 
corresponding coefficients of matrix (23). This can be 
explained by summation of the phase measurement errors 
within the given and the reference subapertures. In contrast 
to Eq. (23), the nondiagonal elements in Eq. (24) are 
nonzero, instead they are determined by the variance of 
noise error within the reference aperture.  

 
3. OPTIMAL ALGORITHM FOR THE 

MULTICHANNEL PHASE MODULATION OF 

RECEIVED SIGNAL  

 
In contrast to the foregoing section, we will not 

prescribe here the operation of photodetection of the 
received signal, but will make use of the theory of 
statistical solutions to obtain the optimal algorithm for 
processing the field with the MPM.  

According to formula (2) for the field in the image 
plane of the target during the mth step, logarithm of the 
likelihood functional is written in the form  

 

Lm[Ym(ξ, t)/Vjm, j = 1, ... , N] ∼ ⌡⌠
(m–1)T0

mT0

 dt⌡⌠
Ω

 d2ξ ×  

 

× 
⎣
⎢
⎡

⎦
⎥
⎤Ym(ξ, t) – ReXm(ξ, t) ∑

j=1

N

 Vjm exp(iasinωj t)

2

 , (25) 

 
where Ω is the observation area in the image plane and 

Vjm = 
Em

Δ  ⌡⌠
Ωj

 exp(iϕm(r))d2r. The estimate of the WF of the 

signal Vjm maximizing functional (25) and corresponding to 

the jth subaperture, is equal to  
 

V
∧

jm ∼ ajm – 
α

1 + α(N – 2)
 ∑

p=/j

N
 
apm, N ≥ 2 , (26) 

 
where  
 

ajm = 
1

Teff
⌡⌠

(m–1)T0

mT0
 

dt ⌡⌠
Ω

 1
s d

2ξ Ym(ξ, t)x*
m(ξ, t)exp (–i a sinωj t); 

 

α = ∑
n=0

∞

 (–1)n

(n!)2  ( )a2
2n 

C
2n
n  . 

 
In its turn, Eq. (26) gives the optimal spatial 

distribution of the complex amplitude of the sensing signal 

over the transmitting aperture Ωa = 
N

j=1

∪ Ωj 

 

Am(r) ∼ V
∧*

jm,  r ∈ Ωj,  j = 1, ..., N. (27) 

 
It follows from Eqs. (26) and (27) that the optimal 

distribution of the sensing signal field can be formed in two 
steps. During the first step, the distorted WF "encoded" in 
the received signal is measured. In order to measure the WF 
within each of N subapertures, an N–channel heterodyne 
receiver must be employed with output signals from the 
channels being proportional to the quantities ajm, 

j = 1, ...,N. In accordance with the expressions for ajm, the 

received field is spatially and temporally filtered in each 
channel of the receiver. The reference radiation of 
heterodyne in the jth channel is given by the function 
xjm(ξ, t)exp(–ia sinωj t). During the second step, a 

"weighted" summation of output signals from the receiver is 
performed following Eq. (26). After conversion of the signal 
into the optical frequency, phase conjugation in each 
channel, and amplification, the sensing signal is emitted 
into the atmosphere.  

The physical meaning of the procedure of "weighted" 
summation described by Eq. (26) is of interest. Since the 
parameter α, which enters in Eq. (26), is a normalized 
correlation coefficient of noise in different channels, the 
second term in Eq. (26) gives an estimate of noise in the 
jth channel. Therefore, procedure (26) consists in 
compensating for the correlated measurement noise. In 
particular, if the noise in different channels is completely 
correlated (a → 0 and α → 1), the "weight" for 
summation ascribed to the measurements in each channel 

approaches unity: V
∧

jm ∼ ajm – 
1

N – 1∑
p≠j

N

 apm. However, if 

the noise is uncorrelated (a ∼ π and α → 0), the estimate 
of WF only in the jth channel is used to form the 
radiation of this channel:  

 

V
∧

jm ∼ ajm . (28) 

 
Similar to the foregoing section, the variance of the WF 
estimation error averaged over the aperture at the moment 
of signal emission  
 

δVm = 

∑
j=1

N

 

⌡
⎮
⎮
⌠

Ωj

 

<⏐V(r, mT0) – Vjm

∧
⏐2> d2r

⌡⌠
Ωa

 <⏐V(r, mT0)⏐
2> d2r

 =  

 
= 1 – RN(0) + 2[RN(0) – RN(Δtm)] + N2β/Qm . (29) 
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and the Strehl factor  
 

Stm = 

<⏐
1
N ∑

j=1

N
  V
∧*

jm 
1
Δ ⌡⌠

Ωj

 

 exp(iϕm(r, mT0))d
2r⏐2>

1
N ∑

j=1

N

 <⏐ V
∧

jm ⏐2>

  

 

g 

⎝
⎛

⎠
⎞R

2
N(Δtm) + 

Nβ
Qm

 [ ]A – 
α

1 + α(N – 2)
 (NR1(0) – A)

(RN(0) + N2β/Qm)
. (30) 

 
A = RN(0) 

 
may provide the simplest criteria for the performance of 
algorithm. The following notations are used in 
Eqs. (29) and (30):  
 

RN(Δtm) = 
1
N ∑

j=1

N

1

Δ2 ⌡⌠
Ωj

 d2r1⌡⌠
Ωj

d2r2 × 

 

× exp ( )– 
1
2 Dϕ

(r1 – r2 + ν
⊥
⋅ (Δtm))  ; 

 

β = 
1

1 – α [ ]1 – 
α

1 + α(N – 1)
 ;  Qm = 

K
−

smn

⎝
⎛

⎠
⎞1 + 

νT

νh
 + 

ηN0

iω

   

 
is the signal–to–noise ratio in the heterodyne receiver, and 
νh is the intensity of the flux of photoelectrons resulted 

from the heterodyne emission. The inequality 
νT/νh + ηN0/iω n1 holds usually for the heterodyne 

receiver, therefore Qmg K smn.  

From Eq. (29) it follows that the error of the algorithm 
consists, as previously, of three components, namely, the 
"dynamic" error 1 – RN(0), the extrapolation error 2[RN(0) –

 RN(Δtm)], and the noise error, N2β/Qm. It is not difficult to 

verify that when the errors are small (then RN(Δtm) g  

g 1 –Γ(11/6)(Nn/N)5/6–(25/36) Γ(5/6)(Δtm/τc)
2) the 

"dynamic" and the extrapolation components agree well 
with the corresponding characteristics of the algorithm of 
direct signal detection considered in the foregoing section. 
As for the noise component, it depends strongly on the 
value of the parameter α. In particular, when the degree of 
phase modulation is low, a → 0, that is, α → 1 – a, and the 
noise component is equal to  

 

δVnm g N(N – 1)/anK
−

sm . (31) 
 

The comparison of Eqs. (18) and (31) shows that the 
error variance is smaller by a factor of (1 + qm)/2aqm in the 

second case. Thus, for instance, when qm = S and a = 0.1, 

Dnm/δVnm = 6. When the degree of phase modulation in the 

optimal algorithm is high aopt∼ π, that is, α → 0, we have  
 

δVnm g N2/K
−

smn. (32) 

 
The noise error of the optimal algorithm differs here from 

the error of algorithm (14) already by a factor of 
(1 + qm)/2a2qm, that is, Dnm/δVnm = 60 for the same values 

of the parameters. In both cases if the errors are small 
(δVnm n 1), the Strehl factor is equal to Stmg 1 – δVnm. In 

the opposite case when the errors are large 
(N2β/Qm . RN(0)), Stm g RN(0)/(N – 1), N . 2.  

The comparative efficiency of the optimal algorithm 
and algorithm (14) is illustrated by Table I, in which the 
values of the Strehl factors are listed as functions of the 

"energetics" of the received signal Qm = K smn.  

 
TABLE I. 

 

Qm 105
 3⋅104

 104
 

Stopt 

Stm 

0,78 
0,51 

0,76 
0,23 

0,70 
0,16 

 
The following values of the parameters were used in 

calculations: N = 30, Nn= 5, aopt= 3π/4 (see Ref. 9), 

a = 0.1, and Δtm/τc= 0. From the given results it follows 

that the efficiency of the optimal algorithm is significantly 
higher. It is most vivid for low energetics (Qm= 104) when 

the compensation effect is absent for algorithm (14), while 
the optimal algorithm still keeps reasonably high 
performance characteristic.  

However, in practice the implementation of the 
optimal algorithm with the "weighted" summation of 
signals (26) may be rather difficult. It is therefore 
interesting to study the efficiency of simpler algorithm 
for estimation of the wavefront phase distortions, for 
example, described by Eq. (28). It is easy to show that 
the variance of the WFP estimation error for this 
algorithm (corresponding to Eq. (29) for the optimal 
case) also consists of three components, namely, the 
"dynamic" error 1 – (1 –α

2)RN (0) + α2N(N – 2)R1(0), 

the extrapolation error  
2{(1 – α)[RN(0) – RN (Δtm)] + αN[R1 (0) – R1 (Δtm)]}, and 

the noise error N2/Qm. However, even when the conditions 

Nn/N → 0, N2/Qm→ 0, and Δtm/τc→ 0, sufficient to provide 

high efficiency of the optimal algorithm, are satisfied, the 
"dynamic" and extrapolation components are nonzero: 
δVmg a2[1 + N(N – 2)R1(0)]. It follows from this formula 

that for low degree of modulation (α → 1) the error is 
unacceptably large.  

The Strehl factor for this algorithm is equal to  
 

Stm g {(1 – α)[R
2
N(Δtm) + NRN(0)/Qm] + 

 

+ αN[αNR
2
1(Δtm) + (1 – α)RN(Δtm)R1(Δtm) + 

 

+ NR1(0)/Qm]}/{(1 – α)2RN(0) + 

 
+ αNR1(0)[2 + (N – 2)α] + N2/Qm} . (33) 

 
Hence, for low degree of modulation depths we obtain  
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Stm g 
R

2
1(Δtm) + R1(0)/Qm

R1(0) + 1/Qm
 g  

 

g 
⎩
⎨
⎧R

2
1(Δtm)/R1(0)   for  Qm/N2.1;

R1(0)   for  Qm/Nn1;
 

 
that is, the algorithm of compensation is absolutely 
inefficient since the Strehl factor does not exceed its value 
in the absence of compensation, i.e., R1(0) ≥ R1(Δtm). In 

the case of high degree of modulation (α → 0), the 
efficiency of the algorithm  
 

Stm g 
R

2
N(Δtm) + NRN(0)/Qm

RN(0) + N2/Qm

 g  

 

g 
⎩
⎨
⎧R

2
N(Δtm)/RN(0)   for  Qm/N2.1;

RN(0)/N   for  Qm/Nn1;
 

 
is close to that of the optimal scheme.  

Thus, when the degree of modulation is high, the 
optimal algorithm can provide highly efficient operation of the  

AOS's without the complicated procedure of "weighted" 
summation of high–frequency signals.  
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