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Distortions of the coherence and phase spectra of the aerosol lidar returns due to 
the noise have been studied theoretically and experimentally. An analysis has been 
carried out for the section of the sounding path considered as a linear system with one 
input and one output. A formula has been derived that allows one to obtain the 
unbiased estimate of the wind velocity from the phase spectra of lidar returns mixed 
with noise.  

 

In sounding the lower troposphere the lidar return is 
determined, to a great extent, by light scattering on aerosol 
particles whose concentration varies in time and space. 

For this reason a set of spatio–temporal samples of 
signals recorded with the use of a lidar is also random. At 
present for the statistical description of the obtained data 
file the methods of correlation and spectral analysis are 
widely used for practical implementation of techniques for 
remote measurements of the parameters of the atmospheric 
turbulence and the wind velocity.1,2 The derivation of 
useful information from the sounding data has brought 
about the need for estimating the signal distortions of 
different physical nature. The problems of taking into 
consideration the main sources of noise, namely, the 
multiplicative noise due to the fluctuations in the energy of 
sounding radiation and the additive noise of the lidar 
recording channel, when performing the correlation 
analysis, have been described in detail in Ref. 3.  

In the present paper the distortions of the statistical 
characteristics of lidar returns due to the noise are studied 
using the spectral analysis.  

As is well known, the main range of applicability of 
the spectral analysis in applied problems is studying the 
input and output processes of the linear systems. The laser 
sounding can also be treated as a hypothetical linear system 
with one input and one output.4 Figure 1 shows this 
concept schematically, where the section r of the sounding 
path is isoplanar with the wind velocity vector V and ϕ is 
the angle between them. The aerosol inhomogeneities 
entrained by the wind cross the section r and cause the 
fluctuations in the lidar signals. We denote a time series of 
the input signals by x(t) and that of the output signals by 
y(t). The parameters of the linear system describing the 
aerosol inhomogeneities transport are characterized by 
coherence γ(f) and phase θ(f) functions determined from the 
power spectra of signals measured at the input and output 
of the system. The coherence function indicates the fraction 
of the signal power at the frequency f associated with the 
contribution of the aerosol inhomogeneities crossing this 
section of the sounding path. The phase angle θ(f) defines 
the transit time of an inhomogeneity across the system, i. e., 
it depends on the spacing r and the wind velocity V: 

 
θ(f) = –2πfr/V. (1) 
 

According to the theory of linear systems, we have for 
the experimentally recorded processes x(t) and y(t)  
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FIG. 1. Diagram showing the idea that the sounding path 
can be represented as a linear system.  

 
To derive analytical relations demonstrating the effect of 

noise on the coherence and phase spectra we represent the 
processes x(t) and y(t) in the form of a sum of the signals u(t) 
and w(t) and the corresponding noise m(t) and n(t) (Fig. 1): 

 

x(t) = u(t) + m(t); 
(3) 

y(t) = w(t) + n(t).  
 
Although the noise of the reference channel (fluctuations of 
the sounding pulse energy) enters in the signals 
multiplicatively, additive representation (3) is valid under 
certain conditions. One of them are small variations of the 
components of the process. This condition is easily satisfied 
since in sounding of the free atmosphere the short–period 
(5–10 min) variations of the backscattering coefficients  
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were less than or equal to 10% (Ref 3) As a rule, the output 
energy fluctuations of solid–state lasers in this time were 
about several per cent.5 One more condition is that the 
measurement data should be centered preliminary in the 
course of their mathematical processing.  

In our further analysis we will deal with uncorrelated 
and correlated input m(t) and output n(t) noise as had been 
the case in Ref. 4. Since in the case of lidar sensing of the 

atmosphere the inequality rL–1 n 1 is practically always 
valid, the signal–to–noise ratios at the input and output of 
the system coincide.  

With uncorrelated input and output noise, i.e., when 
G

mn
(f) = 0, we can write the following relations for the 

coherence and phase spectra:4 
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signal–to–noise ratio.  
Hence it follows that uncorrelated noise in the lidar 

returns leads to a decay of the coherence spectrum but does 
not affect the phase angle. The latter means that the wind 
velocity estimated from the phase spectrum is unbiased.  

Let us now consider the case when noise m(t) and n(t) 
are correlated (laser energy fluctuations), i.e., when 
G

mn
(f) ≠ 0. The formula for the cross–spectrum G

xy
(f) is 

then written in the form  
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Further calculations can be substantially simplified and 
more vivid if the spectra sought are represented graphically 
in a complex plane shown in Fig. 2. This figure shows the 
cross–spectra G

uw
(f) and G

xy
(f) in polar coordinates, where 

the line segments correspond to the moduli of the 
corresponding spectra and the slope angles – to the phase 
angles θ

uw
(f) and θ

xy
(f).  

 

 
 
FIG. 2 Diagram of spectra in polar coordinates in the 
complex plane.  
 

Based on this graphic representation, Bendat and 
Pirsol considered two particular cases, when ⏐G

mn
(f)⏐ is 

parallel to ⏐G
uw

(f)⏐ and ⏐G
mn

(f)⏐ is perpendicular to 

⏐G
uw

(f)⏐. As   γ
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For the second variant, when θ

xy
(f) = θ
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(f) + Δθ
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(f) , we 

have4  
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In our case since the noise fluctuations at different 

points of the path are synchronous, the modulus ⏐G
mn

(f)⏐ is 
parallel to the real axis. Then for the coherence and phase 
functions we can derive the following formulas: 
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As can be seen from Eqs. (9) and (10), the coherence and 
phase spectra derived from the experimental data in the 
existence of a correlated noise on the sounding path are 
always distorted. The degree of distortion is determined 
from the signal–to–noise ratio α(f), therefore it is natural 
to expect that the least distortions of the spectrum occur at 
low frequencies where the ratio α(f) is minimum because of 
the power–law character of the valid signal spectrum.1,6,7 It 
should be noted that in contrast to the case of uncorrelated 
noise, the phase spectrum here experiences noise distortions. 
Nevertheless, it follows from Eq. (10) that for the phase 
angles being multiple of π, the angle θ

xy
(f) measured 

experimentally should coincide with its true value θ
uw

(f). 

This conclusion can easily be supported graphically in 
Fig. 2. It is clear that with increase of frequency the line 
segment corresponding to G

xy
(f) must rotate about the 

origin of the coordinate system. When the angle θ
xy

(f) 

reaches the value þ π, all line segments corresponding to the 
spectra G

xy
(f) become parallel to the abscissa. This, in turn, 

means that the phase angles θ
uw

(f) and θ
xy

(f) coincide. The 

latter, according to Eq. (1), allows us to obtain a simple 
formula for an unbiased estimate of the wind velocity.  

 
V = –2f

π
rcosϕ,  

 
where f

π
 is the frequency at which the phase reaches ± π.  

The experimental studies of the statistical properties of 
lidar returns were carried out using a LOZA 3 lidar in 
August–September, 1988 near Tomsk over a flat underlying 
surface. The sounding path was located at an elevation 
angle 3–5° in the direction along the wind velocity. The 
recording system of the lidar enabled us to record the lidar 
return with the 20 m step along the sounding path. The 
first strobe was taken at an altitude of 10 m and the last – 
at an altitude of 30 m.  

Two horizontal components of the wind velocity were 
measured simultaneously at a frequency of 4 Hz using an 
acoustic anemometer9 placed on the meteomust at an altitude 
of 20 m corresponding to the middle point of the measuring 
section of the lidar path. The rate of the lidar readings in the 
formation of temporal series of signals was equal to 2 Hz. The 
lidar and anemometer data were synchronously recorded on an 
Elektronika–60 microcomputer and the period of observation 
was 30 min. The modulus and the direction of the average  



330   Atmos. Oceanic Opt.  /April  1991/  Vol. 4,  No. 4 Yu.S. Balin  et  al. 
 

 

wind velocity as well as the data on wind velocity 
fluctuations were obtained using the anemometer. The 
auto– and cross–spectra of lidar returns were calculated 
from lidar data using the fast Fourier transform.4,6 To 
increase the reliability of the statistical data, the spectra 
were averaged over the ensemble obtained in processing of 
the lidar data corresponding to the different pairs of 

points along the sounding path.6,7 The coherence γ
2
xy(f) 

and phase θ
xy

(f) spectra were found from the spectra of 

lidar returns using formulas (2).  

Actual spectra γ
2
xy(f) and θ

uw
(f) were calculated 

using the anemometric data on the absolute value of the 
wind velocity, direction, and fluctuations based on the 
theory described in Ref. 7. In the calculations we 
accepted the hypothesis of the "frozen" turbulence since 
the lidar readings were closely spaced while the lifetime 
of the inhomogeneities is about several tens of seconds.3,7 
This means that during the time of propagation of the 
aerosol inhomogeneities between the points of 
measurements on the path their shapes change 
insignificantly.  

On the whole, 27 series of measurement were 
statistically processed. In two cases we failed to derive 
the desired information from lidar data since the 
variations of the signals were less than 2%, and the 
signal–to–noise ratio was smaller than unity.  

As an illustration, Figs. 3 and 4 show the typical 
coherence and phase spectra derived from two successive 
realizations under stable meteorological conditions on 
September 5, 1988. The acoustic anemometric 
measurements gave the average wind velocity of 3.8 and 
3.9 m/s, respectively, and the value of the wind velocity  

fluctuations about 11% in both cases. The lidar data are 
denoted by circles and the theoretical calculations of the 
coherence and phase functions are shown by curves 2–5. 
The confidence intervals corresponded to the number of 
degrees of freedom n = 128 when the significance level 
was taken to be 0.05.  

In processing the experimental data the coherent and 
incoherent components of the noise were separated. The 
separation was carried out using the technique presented 
in Ref. 10 on the basis of the analysis of the values of 
discontinuities of auto– and cross–correlation functions 
with zero delays. The signal–to–noise ratios were equal 
to 32 and 10 for uncorrelated noise and 49 and 12 for 
correlated noise in the first (Fig. 3a) and second (Fig. 3b) 
realizations, respectively. The total ratio of variances of 
the SNR for the data shown in the upper part of the 
figure was equal to 19 and in the second case it was equal 
to 6. The frequency dependences α(f) obtained taking into 
account the power–law character of the spectrum G

uu
(f) 

of the valid signal are shown in Fig. 3 by curves 1.  

True values of γ
2
uw(f) and θ

uw
(f) are shown in the 

figures by curves 2. The effect of uncorrelated noise on 
the general behavior of the dependences γ(f) (curves 3 in 
Fig. 3) calculated according to Eq. (4) is weak. It merely 
reduces the coherence spectrum. Since the uncorrelated 
noise does not influence the phase angle there are no such 
dependences in Fig. 4.  

The existence of the coherent noise in the reference 
channel leads to significant distortions of the coherence 
and phase spectra at the middle and high (f > 0.1 Hz) 
frequencies. The calculated results based on relations (9) 
and (10) are shown in Figs. 3 and 4 by curves 4.  

 
 

 
 

 
 

 

 
FIG. 3. Comparison between the theoretical and experimental coherence functions with different sources of noise for different 
signal–to–noise ratio: a) SNR = 19; b) SNR = 6. Curve 1 shows α(f), curves 2–5 show theoretical calculations of γ2(f) and 
circles show the experimental results.  
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FIG. 4. Comparison between the theoretical and experimental functions of the phase angle. Initial data are identical to Fig. 3. 
Curve 1 shows α(f), curves 2 and 4 show the theoretical calculation of θ(f), and circles show the experimental data.  

 

In the low– and middle frequency ranges the effect 
of correlated noise appeared in the decrease of the 
absolute values of the coherence and phase spectra. The 
experimental data in this case were in satisfactory 
agreement with the theoretical results. In the high–
frequency range the coherence spectrum rose. This is 
explained by the predominant effect of the coherent noise. 
As can be seen from the figure, in this frequency range 
the rate of growth of the coherence function increased 
with increase of the signal–to–noise ratio. At the same 
time, at f > 0. 1 Hz the curves and the experimental data 

on γ
2
xy(f) differ strongly. At first the values γ

2
xy(f) increase 

and then they tend to decrease. On the whole, in this 
part of the figure the values of the coherence spectra are 

concentrated near γ
2
xy(f) = 0.1–0.2.  

Such disagreement between the calculations and 
experiment can obviously be explained by simultaneous 
effect of two factors. The correlated noise, when it 
becomes predominant, results in the increase of the degree 
of coherence while the uncorrelated noise always leads to 
its decrease. The rigorous consideration of the 
simultaneous effect of these factors seems to be difficult. 
Nevertheless, if we assume the influence of both types of 

noise be independent, then γ
2
xy(f) = γ

uw

2 
(f)Kc(f)Ku(f). 

Here K
c(f) and Ku(f) are functions of frequency (Kc(f), 

Ku(f) < 1) that distort the degree of coherence due to the 

correlated and uncorrelated noise, respectively.  

The formula for calculating γ
2
cxy(f) with an account for 

the simultaneous effect of these factors takes then the form  
 

2γjxy(f) = 

2γcxy(f) 
2γuxy(f)
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where γ
2
cxy(f) and γ

2
uxy(f) are the coherence functions 

obtained with an account for the effect of the correlated 
(curve 2) and uncorrelated (curve 3) noise, respectively.  

The calculated results for γ
2
cxy(f) shown in Fig. 3 by 

curve 5 agree with the experimental data best of all. This 
allows us to assume that this approach is justified.  

The effect of noise on the phase spectra was weak but 
their shapes differ substantially depending on the signal–
to–noise ratio. When α(f) increases (Fig. 4b), a substantial 
deformation is observed in the spectrum at middle 
frequencies. However, according to the aforementioned 
conclusion, the noise has no effect on the true value of the 
phase spectrum at f = fπ. As can be seen from Fig. 4a, 

curves 2 and 4 are intersected at this point. When the 
signal–to–noise ratio decreases (Fig. 4b), curve 4 intersects 
the abscissa. It should be noted, however, that in the last 
case the determination of fπ is impeded by a large statistical 

error because of the small value of the coherence spectrum   

γ
2
xy(fπ) . This difficulty can be overcome by calculating the 

phase spectrum for increased spacing r between the 
measurement points along the sounding path. This means 
that the lidar system is adjusted to larger scale of the 
aerosol inhomogeneities and, hence, we shift toward the 
lower frequencies of the spectrum where the signal–to–
noise ratio is higher. The shape of the phase spectrum 
becomes similar to that of the spectrum shown in the left 
part of the figure. It is natural in this case that the error in 
determining the position of fπ increases, because of the 

discrete character of the measured spectra since the 
increment of the value Δf is determined by the realization 
length.  

Thus for the lidar facilities used and for the aerosol 
inhomogeneities of the size normally occurring in the 
atmosphere and the moderate winds, the use of the spectral 
analysis to process statistically the lidar data is limited by 
the frequency range f below ∼ 0.1 Hz.  
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